示例#1
0
def test_as_sum_raises():
    e = Integral((x + y)**2, (x, 0, 1))
    pytest.raises(ValueError, lambda: e.as_sum(-1))
    pytest.raises(ValueError, lambda: e.as_sum(0))
    pytest.raises(ValueError, lambda: Integral(x).as_sum(3))
    pytest.raises(NotImplementedError, lambda: e.as_sum(oo))
    pytest.raises(NotImplementedError, lambda: e.as_sum(3, method='xxxx2'))
示例#2
0
def test_subs7():
    e = Integral(x, (x, 1, y), (y, 1, 2))
    assert e.subs({x: 1, y: 2}) == e
    e = Integral(sin(x) + sin(y), (x, sin(x), sin(y)),
                 (y, 1, 2))
    assert e.subs({sin(y): 1}) == e
    assert e.subs({sin(x): 1}) == Integral(sin(x) + sin(y), (x, 1, sin(y)),
                                           (y, 1, 2))
示例#3
0
def test_sympyissue_4665():
    # Allow only upper or lower limit evaluation
    e = Integral(x**2, (x, None, 1))
    f = Integral(x**2, (x, 1, None))
    assert e.doit() == Rational(1, 3)
    assert f.doit() == Rational(-1, 3)
    assert Integral(x*y, (x, None, y)).subs({y: t}) == Integral(x*t, (x, None, t))
    assert Integral(x*y, (x, y, None)).subs({y: t}) == Integral(x*t, (x, t, None))
    assert integrate(x**2, (x, None, 1)) == Rational(1, 3)
    assert integrate(x**2, (x, 1, None)) == Rational(-1, 3)
    assert integrate("x**2", ("x", "1", None)) == Rational(-1, 3)
示例#4
0
def test_doit_integrals():
    e = Integral(Integral(2*x), (x, 0, 1))
    assert e.doit() == Rational(1, 3)
    assert e.doit(deep=False) == Rational(1, 3)
    f = Function('f')
    # doesn't matter if the integral can't be performed
    assert Integral(f(x), (x, 1, 1)).doit() == 0
    # doesn't matter if the limits can't be evaluated
    assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0
    assert Integral(x, (a, 0)).doit() == 0
    limits = ((a, 1, exp(x)), (x, 0))
    assert Integral(a, *limits).doit() == Rational(1, 4)
    assert Integral(a, *list(reversed(limits))).doit() == 0
示例#5
0
def test_as_sum_midpoint1():
    e = Integral(sqrt(x**3 + 1), (x, 2, 10))
    assert e.as_sum(1, method="midpoint") == 8*sqrt(217)
    assert e.as_sum(2, method="midpoint") == 4*sqrt(65) + 12*sqrt(57)
    assert e.as_sum(3, method="midpoint") == 8*sqrt(217)/3 + \
        8*sqrt(3081)/27 + 8*sqrt(52809)/27
    assert e.as_sum(4, method="midpoint") == 2*sqrt(730) + \
        4*sqrt(7) + 4*sqrt(86) + 6*sqrt(14)
    assert abs(e.as_sum(4, method="midpoint").evalf() - e.evalf()) < 0.5

    e = Integral(sqrt(x**3 + y**3), (x, 2, 10), (y, 0, 10))
    pytest.raises(NotImplementedError, lambda: e.as_sum(4))
示例#6
0
def test_subs2():
    e = Integral(exp(x - y), x, t)
    assert e.subs({y: 3}) == Integral(exp(x - 3), x, t)
    e = Integral(exp(x - y), (x, 0, 1), (t, 0, 1))
    assert e.subs({y: 3}) == Integral(exp(x - 3), (x, 0, 1), (t, 0, 1))
    f = Lambda(x, exp(-x**2))
    conv = Integral(f(x - y)*f(y), (y, -oo, oo), (t, 0, 1))
    assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
示例#7
0
def test_subs6():
    e = Integral(x*y, (x, f(x), f(y)))
    assert e.subs({x: 1}) == Integral(x*y, (x, f(1), f(y)))
    assert e.subs({y: 1}) == Integral(x, (x, f(x), f(1)))
    e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y)))
    assert e.subs({x: 1}) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y)))
    assert e.subs({y: 1}) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1)))
    e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a)))
    assert e.subs({a: 1}) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1)))
示例#8
0
def test_basics():
    assert Integral(0, x) != 0
    assert Integral(x, (x, 1, 1)) != 0
    assert Integral(oo, x) != oo
    assert Integral(nan, x) == nan

    assert diff(Integral(y, y), x) == 0
    assert diff(Integral(x, (x, 0, 1)), x) == 0
    assert diff(Integral(x, x), x) == x
    assert diff(Integral(t, (t, 0, x)), x) == x + Integral(0, (t, 0, x))

    e = (t + 1)**2
    assert diff(integrate(e, (t, 0, x)), x) == \
        diff(Integral(e, (t, 0, x)), x).doit().expand() == \
        ((1 + x)**2).expand()
    assert diff(integrate(e, (t, 0, x)), t) == \
        diff(Integral(e, (t, 0, x)), t) == 0
    assert diff(integrate(e, (t, 0, x)), a) == \
        diff(Integral(e, (t, 0, x)), a) == 0
    assert diff(integrate(e, t), a) == diff(Integral(e, t), a) == 0

    assert integrate(e, (t, a, x)).diff(x) == \
        Integral(e, (t, a, x)).diff(x).doit().expand()
    assert Integral(e, (t, a, x)).diff(x).doit() == ((1 + x)**2)
    assert integrate(e, (t, x, a)).diff(x).doit() == (-(1 + x)**2).expand()

    assert integrate(t**2, (t, x, 2*x)).diff(x) == 7*x**2

    assert Integral(x, x).atoms() == {x}
    assert Integral(f(x), (x, 0, 1)).atoms() == {0, 1, x}

    assert diff_test(Integral(x, (x, 3*y))) == {y}
    assert diff_test(Integral(x, (a, 3*y))) == {x, y}

    assert integrate(x, (x, oo, oo)) == 0  # issue sympy/sympy#8171
    assert integrate(x, (x, -oo, -oo)) == 0

    # sum integral of terms
    assert integrate(y + x + exp(x), x) == x*y + x**2/2 + exp(x)

    assert Integral(x).is_commutative
    n = Symbol('n', commutative=False)
    assert Integral(n + x, x).is_commutative is False
示例#9
0
def test_subs5():
    e = Integral(exp(-x**2), (x, -oo, oo))
    assert e.subs({x: 5}) == e
    e = Integral(exp(-x**2 + y), x)
    assert e.subs({y: 5}) == Integral(exp(-x**2 + 5), x)
    e = Integral(exp(-x**2 + y), (x, x))
    assert e.subs({x: 5}) == Integral(exp(y - x**2), (x, 5))
    assert e.subs({y: 5}) == Integral(exp(-x**2 + 5), x)
    e = Integral(exp(-x**2 + y), (y, -oo, oo), (x, -oo, oo))
    assert e.subs({x: 5}) == e
    assert e.subs({y: 5}) == e
    # Test evaluation of antiderivatives
    e = Integral(exp(-x**2), (x, x))
    assert e.subs({x: 5}) == Integral(exp(-x**2), (x, 5))
    e = Integral(exp(x), x)
    assert (e.subs({x: 1}) - e.subs({x: 0}) -
            Integral(exp(x), (x, 0, 1))).doit().is_zero
示例#10
0
def test_nested_doit():
    e = Integral(Integral(x, x), x)
    f = Integral(x, x, x)
    assert e.doit() == f.doit()
示例#11
0
def test_doit2():
    f = Integral(2 * x, x)
    l = Limit(f, x, oo)
    # limit() breaks on the contained Integral.
    assert l.doit(deep=False) == l
示例#12
0
def test_expand():
    e = Integral(f(x)+f(x**2), (x, 1, y))
    assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y))
示例#13
0
def test_sym_integral():
    f = Lambda(x, exp(-x**2))
    l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="diofant")
    assert l(y).doit() == sqrt(pi)
示例#14
0
def test_sympyissue_4021():
    e = Integral(x, x) + 1
    assert str(e) == 'Integral(x, x) + 1'
示例#15
0
def test_is_zero():
    assert Integral(0, (x, 1, x)).is_zero
    assert Integral(1, (x, 1, 1)).is_zero
    assert Integral(1, (x, m)).is_zero is None
    assert Integral(1, (x, 1, 2), (y, 2)).is_nonzero
    assert Integral(x, (m, 0)).is_zero
    assert Integral(x + m, (m, 0)).is_zero is None
    i = Integral(m, (m, 1, exp(x)), (x, 0))
    assert i.is_zero is None
    assert Integral(m, (x, 0), (m, 1, exp(x))).is_zero

    assert Integral(x, (x, oo, oo)).is_zero  # issue sympy/sympy#8171
    assert Integral(x, (x, -oo, -oo)).is_zero

    # this is zero but is beyond the scope of what is_zero
    # should be doing
    assert Integral(sin(x), (x, 0, 2*pi)).is_zero is None
示例#16
0
def test_is_real():
    assert Integral(x**3, (x, 1, 3)).is_real
    assert Integral(1/(x - 1), (x, -1, 1)).is_real is not True
示例#17
0
def test_is_number():
    assert Integral(x).is_number is False
    assert Integral(1, x).is_number is False
    assert Integral(1, (x, 1)).is_number is True
    assert Integral(1, (x, 1, 2)).is_number is True
    assert Integral(1, (x, 1, y)).is_number is False
    assert Integral(1, (x, y)).is_number is False
    assert Integral(x, y).is_number is False
    assert Integral(x, (y, 1, x)).is_number is False
    assert Integral(x, (y, 1, 2)).is_number is False
    assert Integral(x, (x, 1, 2)).is_number is True
    # `foo.is_number` should always be eqivalent to `not foo.free_symbols`
    # in each of these cases, there are pseudo-free symbols
    i = Integral(x, (y, 1, 1))
    assert i.is_number is False and i.evalf() == 0
    i = Integral(x, (y, z, z))
    assert i.is_number is False and i.evalf() == 0
    i = Integral(1, (y, z, z + 2))
    assert i.is_number is False and i.evalf() == 2

    assert Integral(x*y, (x, 1, 2), (y, 1, 3)).is_number is True
    assert Integral(x*y, (x, 1, 2), (y, 1, z)).is_number is False
    assert Integral(x, (x, 1)).is_number is True
    assert Integral(x, (x, 1, Integral(y, (y, 1, 2)))).is_number is True
    assert Integral(Sum(z, (z, 1, 2)), (x, 1, 2)).is_number is True
    # it is possible to get a false negative if the integrand is
    # actually an unsimplified zero, but this is true of is_number in general.
    assert Integral(sin(x)**2 + cos(x)**2 - 1, x).is_number is False
    assert Integral(f(x), (x, 0, 1)).is_number is True
示例#18
0
def test_symbols():
    assert Integral(0, x).free_symbols == {x}
    assert Integral(x).free_symbols == {x}
    assert Integral(x, (x, None, y)).free_symbols == {y}
    assert Integral(x, (x, y, None)).free_symbols == {y}
    assert Integral(x, (x, 1, y)).free_symbols == {y}
    assert Integral(x, (x, y, 1)).free_symbols == {y}
    assert Integral(x, (x, x, y)).free_symbols == {x, y}
    assert Integral(x, x, y).free_symbols == {x, y}
    assert Integral(x, (x, 1, 2)).free_symbols == set()
    assert Integral(x, (y, 1, 2)).free_symbols == {x}
    # pseudo-free in this case
    assert Integral(x, (y, z, z)).free_symbols == {x, z}
    assert Integral(x, (y, 1, 2), (y, None, None)).free_symbols == {x, y}
    assert Integral(x, (y, 1, 2), (x, 1, y)).free_symbols == {y}
    assert Integral(2, (y, 1, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
    assert Integral(2, (y, x, 2), (y, 1, x), (x, 1, 2)).free_symbols == set()
    assert Integral(2, (x, 1, 2), (y, x, 2), (y, 1, 2)).free_symbols == \
        {x}
示例#19
0
def test_as_dummy():
    assert Integral(x, x).as_dummy() == Integral(x, x)
示例#20
0
def test_doit_integrals():
    e = Integral(Integral(2*x), (x, 0, 1))
    assert e.doit() == Rational(1, 3)
    assert e.doit(deep=False) == Rational(1, 3)
    f = Function('f')
    # doesn't matter if the integral can't be performed
    assert Integral(f(x), (x, 1, 1)).doit() == 0
    # doesn't matter if the limits can't be evaluated
    assert Integral(0, (x, 1, Integral(f(x), x))).doit() == 0
    assert Integral(x, (a, 0)).doit() == 0
    limits = ((a, 1, exp(x)), (x, 0))
    assert Integral(a, *limits).doit() == Rational(1, 4)
    assert Integral(a, *list(reversed(limits))).doit() == 0
示例#21
0
def test_integral_reconstruct():
    e = Integral(x**2, (x, -1, 1))
    assert e == Integral(*e.args)
示例#22
0
def test_probability():
    # various integrals from probability theory
    mu1, mu2 = symbols('mu1 mu2', real=True, nonzero=True)
    sigma1, sigma2 = symbols('sigma1 sigma2',
                             real=True,
                             nonzero=True,
                             positive=True)
    rate = Symbol('lambda', real=True, positive=True)

    def normal(x, mu, sigma):
        return 1 / sqrt(2 * pi * sigma**2) * exp(-(x - mu)**2 / 2 / sigma**2)

    def exponential(x, rate):
        return rate * exp(-rate * x)

    assert integrate(normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == 1
    assert integrate(x*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) == \
        mu1
    assert integrate(x**2*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**2 + sigma1**2
    assert integrate(x**3*normal(x, mu1, sigma1), (x, -oo, oo), meijerg=True) \
        == mu1**3 + 3*mu1*sigma1**2
    assert integrate(normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == 1
    assert integrate(x * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu1
    assert integrate(y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu2
    assert integrate(x * y * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo),
                     meijerg=True) == mu1 * mu2
    assert integrate(
        (x + y + 1) * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
        (x, -oo, oo), (y, -oo, oo),
        meijerg=True) == 1 + mu1 + mu2
    assert integrate((x + y - 1)*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        -1 + mu1 + mu2

    i = integrate(x**2 * normal(x, mu1, sigma1) * normal(y, mu2, sigma2),
                  (x, -oo, oo), (y, -oo, oo),
                  meijerg=True)
    assert not i.has(Abs)
    assert simplify(i) == mu1**2 + sigma1**2
    assert integrate(y**2*normal(x, mu1, sigma1)*normal(y, mu2, sigma2),
                     (x, -oo, oo), (y, -oo, oo), meijerg=True) == \
        sigma2**2 + mu2**2

    assert integrate(exponential(x, rate), (x, 0, oo), meijerg=True) == 1
    assert integrate(x*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        1/rate
    assert integrate(x**2*exponential(x, rate), (x, 0, oo), meijerg=True) == \
        2/rate**2

    def E(expr):
        res1 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1),
                         (x, 0, oo), (y, -oo, oo),
                         meijerg=True)
        res2 = integrate(expr * exponential(x, rate) * normal(y, mu1, sigma1),
                         (y, -oo, oo), (x, 0, oo),
                         meijerg=True)
        assert expand_mul(res1) == expand_mul(res2)
        return res1

    assert E(1) == 1
    assert E(x * y) == mu1 / rate
    assert E(x * y**2) == mu1**2 / rate + sigma1**2 / rate
    ans = sigma1**2 + 1 / rate**2
    assert simplify(E((x + y + 1)**2) - E(x + y + 1)**2) == ans
    assert simplify(E((x + y - 1)**2) - E(x + y - 1)**2) == ans
    assert simplify(E((x + y)**2) - E(x + y)**2) == ans

    # Beta' distribution
    alpha, beta = symbols('alpha beta', positive=True, real=True)
    betadist = x**(alpha - 1)*(1 + x)**(-alpha - beta)*gamma(alpha + beta) \
        / gamma(alpha)/gamma(beta)
    assert integrate(betadist, (x, 0, oo), meijerg=True) == 1
    i = integrate(x * betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert (combsimp(i[0]), i[1]) == (alpha / (beta - 1), 1 < beta)
    j = integrate(x**2 * betadist, (x, 0, oo), meijerg=True, conds='separate')
    assert j[1] == (1 < beta - 1)
    assert combsimp(j[0] - i[0]**2) == (alpha + beta - 1)*alpha \
        / (beta - 2)/(beta - 1)**2

    # Beta distribution
    # NOTE: this is evaluated using antiderivatives. It also tests that
    #       meijerint_indefinite returns the simplest possible answer.
    a, b = symbols('a b', positive=True)
    betadist = x**(a - 1) * (-x + 1)**(b - 1) * gamma(a + b) / (gamma(a) *
                                                                gamma(b))
    assert simplify(integrate(betadist, (x, 0, 1), meijerg=True)) == 1
    assert simplify(integrate(x*betadist, (x, 0, 1), meijerg=True)) == \
        a/(a + b)
    assert simplify(integrate(x**2*betadist, (x, 0, 1), meijerg=True)) == \
        a*(a + 1)/(a + b)/(a + b + 1)
    assert simplify(integrate(x**y*betadist, (x, 0, 1), meijerg=True)) == \
        Piecewise((gamma(a + b)*gamma(a + y)/(gamma(a)*gamma(a + b + y)),
                   -a - re(y) + 1 < 1),
                  (Integral(x**(a + y - 1)*(-x + 1)**(b - 1)*gamma(a + b)/(gamma(a)*gamma(b)),
                            (x, 0, 1)), True))

    # Chi distribution
    k = Symbol('k', integer=True, positive=True)
    chi = 2**(1 - k / 2) * x**(k - 1) * exp(-x**2 / 2) / gamma(k / 2)
    assert powsimp(integrate(chi, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x*chi, (x, 0, oo), meijerg=True)) == \
        sqrt(2)*gamma((k + 1)/2)/gamma(k/2)
    assert simplify(integrate(x**2 * chi, (x, 0, oo), meijerg=True)) == k

    # Chi^2 distribution
    chisquared = 2**(-k / 2) / gamma(k / 2) * x**(k / 2 - 1) * exp(-x / 2)
    assert powsimp(integrate(chisquared, (x, 0, oo), meijerg=True)) == 1
    assert simplify(integrate(x * chisquared, (x, 0, oo), meijerg=True)) == k
    assert simplify(integrate(x**2*chisquared, (x, 0, oo), meijerg=True)) == \
        k*(k + 2)
    assert combsimp(
        integrate(((x - k) / sqrt(2 * k))**3 * chisquared, (x, 0, oo),
                  meijerg=True)) == 2 * sqrt(2) / sqrt(k)

    # Dagum distribution
    a, b, p = symbols('a b p', positive=True, real=True)
    # XXX (x/b)**a does not work
    dagum = a * p / x * (x / b)**(a * p) / (1 + x**a / b**a)**(p + 1)
    assert simplify(integrate(dagum, (x, 0, oo), meijerg=True)) == 1
    # XXX conditions are a mess
    arg = x * dagum
    assert simplify(integrate(
        arg, (x, 0, oo), meijerg=True,
        conds='none')) == a * b * gamma(1 - 1 / a) * gamma(p + 1 + 1 / a) / (
            (a * p + 1) * gamma(p))
    assert simplify(integrate(
        x * arg, (x, 0, oo), meijerg=True,
        conds='none')) == a * b**2 * gamma(1 -
                                           2 / a) * gamma(p + 1 + 2 / a) / (
                                               (a * p + 2) * gamma(p))

    # F-distribution
    d1, d2 = symbols('d1 d2', positive=True)
    f = sqrt(((d1*x)**d1 * d2**d2)/(d1*x + d2)**(d1 + d2))/x \
        / gamma(d1/2)/gamma(d2/2)*gamma((d1 + d2)/2)
    assert simplify(integrate(f, (x, 0, oo), meijerg=True)) == 1
    # TODO conditions are a mess
    assert simplify(integrate(x * f, (x, 0, oo), meijerg=True,
                              conds='none')) == d2 / (d2 - 2)
    assert simplify(
        integrate(x**2 * f, (x, 0, oo), meijerg=True,
                  conds='none')) == d2**2 * (d1 + 2) / d1 / (d2 - 4) / (d2 - 2)

    # TODO gamma, rayleigh

    # inverse gaussian
    lamda, mu = symbols('lamda mu', positive=True)
    dist = sqrt(lamda / 2 / pi) * x**(-Rational(3, 2)) * exp(
        -lamda * (x - mu)**2 / x / 2 / mu**2)

    def mysimp(expr):
        return simplify(expr.rewrite(exp))

    assert mysimp(integrate(dist, (x, 0, oo))) == 1
    assert mysimp(integrate(x * dist, (x, 0, oo))) == mu
    assert mysimp(integrate((x - mu)**2 * dist, (x, 0, oo))) == mu**3 / lamda
    assert mysimp(integrate((x - mu)**3 * dist,
                            (x, 0, oo))) == 3 * mu**5 / lamda**2

    # Levi
    c = Symbol('c', positive=True)
    assert integrate(
        sqrt(c / 2 / pi) * exp(-c / 2 / (x - mu)) / (x - mu)**Rational(3, 2),
        (x, mu, oo)) == 1
    # higher moments oo

    # log-logistic
    distn = (beta/alpha)*x**(beta - 1)/alpha**(beta - 1) / \
        (1 + x**beta/alpha**beta)**2
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    # NOTE the conditions are a mess, but correctly state beta > 1
    assert simplify(integrate(x*distn, (x, 0, oo), conds='none')) == \
        pi*alpha/beta/sin(pi/beta)
    # (similar comment for conditions applies)
    assert simplify(integrate(x**y*distn, (x, 0, oo), conds='none')) == \
        pi*alpha**y*y/beta/sin(pi*y/beta)

    # weibull
    k = Symbol('k', positive=True, real=True)
    n = Symbol('n', positive=True)
    distn = k / lamda * (x / lamda)**(k - 1) * exp(-(x / lamda)**k)
    assert simplify(integrate(distn, (x, 0, oo))) == 1
    assert simplify(integrate(x**n*distn, (x, 0, oo))) == \
        lamda**n*gamma(1 + n/k)

    # rice distribution
    nu, sigma = symbols('nu sigma', positive=True)
    rice = x / sigma**2 * exp(-(x**2 + nu**2) / 2 / sigma**2) * besseli(
        0, x * nu / sigma**2)
    assert integrate(rice, (x, 0, oo), meijerg=True) == 1
    # can someone verify higher moments?

    # Laplace distribution
    mu = Symbol('mu', extended_real=True)
    b = Symbol('b', positive=True)
    laplace = exp(-abs(x - mu) / b) / 2 / b
    assert integrate(laplace, (x, -oo, oo), meijerg=True) == 1
    assert integrate(x * laplace, (x, -oo, oo), meijerg=True) == mu
    assert integrate(x**2*laplace, (x, -oo, oo), meijerg=True) == \
        2*b**2 + mu**2

    # TODO are there other distributions supported on (-oo, oo) that we can do?

    # misc tests
    k = Symbol('k', positive=True)
    assert combsimp(
        expand_mul(
            integrate(log(x) * x**(k - 1) * exp(-x) / gamma(k),
                      (x, 0, oo)))) == polygamma(0, k)
示例#23
0
def test_series():
    i = Integral(cos(x), (x, x))
    e = i.lseries(x)
    s1 = i.nseries(x, n=8).removeO().doit()
    s2 = Add(*[next(e) for j in range(4)])
    assert s1 == s2
示例#24
0
def test_integral():
    f = Lambda(x, exp(-x**2))
    l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="diofant")
    assert l(x) == Integral(exp(-x**2), (x, -oo, oo))
示例#25
0
def test_as_sum_left():
    e = Integral((x + y)**2, (x, 0, 1))
    assert e.as_sum(1, method='left').expand() == y**2
    assert e.as_sum(2, method='left').expand() == Rational(1, 8) + y/2 + y**2
    assert e.as_sum(3, method='left').expand() == Rational(5, 27) + 2*y/3 + y**2
    assert e.as_sum(4, method='left').expand() == Rational(7, 32) + 3*y/4 + y**2
示例#26
0
def test_Integral():
    assert str(Integral(sin(x), y)) == 'Integral(sin(x), y)'
    assert str(Integral(sin(x), (y, 0, 1))) == 'Integral(sin(x), (y, 0, 1))'
示例#27
0
def test_as_sum_trapezoid():
    e = Integral(sin(x), (x, 3, 7))
    assert e.as_sum(2, 'trapezoid') == 2*sin(5) + sin(3) + sin(7)
示例#28
0
def test_doit():
    f = Integral(2 * x, x)
    l = Limit(f, x, oo)
    assert l.doit() == oo
示例#29
0
def test_as_sum_left():
    e = Integral((x + y)**2, (x, 0, 1))
    assert e.as_sum(1, method="left").expand() == y**2
    assert e.as_sum(2, method="left").expand() == Rational(1, 8) + y/2 + y**2
    assert e.as_sum(3, method="left").expand() == Rational(5, 27) + 2*y/3 + y**2
    assert e.as_sum(4, method="left").expand() == Rational(7, 32) + 3*y/4 + y**2
示例#30
0
def test_conjugate_transpose():
    A, B = symbols("A B", commutative=False)

    x = Symbol("x", complex=True)
    p = Integral(A*B, (x,))
    assert p.adjoint().doit() == p.doit().adjoint()
    assert p.conjugate().doit() == p.doit().conjugate()
    assert p.transpose().doit() == p.doit().transpose()

    x = Symbol("x", extended_real=True)
    p = Integral(A*B, (x,))
    assert p.adjoint().doit() == p.doit().adjoint()
    assert p.conjugate().doit() == p.doit().conjugate()
    assert p.transpose().doit() == p.doit().transpose()
示例#31
0
def test_as_sum_midpoint2():
    e = Integral((x + y)**2, (x, 0, 1))
    assert e.as_sum(1, method='midpoint').expand() == Rational(1, 4) + y + y**2
    assert e.as_sum(2, method='midpoint').expand() == Rational(5, 16) + y + y**2
    assert e.as_sum(3, method='midpoint').expand() == Rational(35, 108) + y + y**2
    assert e.as_sum(4, method='midpoint').expand() == Rational(21, 64) + y + y**2
示例#32
0
def test_subs4():
    e = Integral(exp(x), (x, 0, y), (t, y, 1))
    assert e.subs({y: 3}) == Integral(exp(x), (x, 0, 3), (t, 3, 1))
    f = Lambda(x, exp(-x**2))
    conv = Integral(f(y)*f(y), (y, -oo, oo), (t, x, 1))
    assert conv.subs({x: 0}) == Integral(exp(-2*y**2), (y, -oo, oo), (t, 0, 1))
示例#33
0
def test_integration_variable():
    pytest.raises(ValueError, lambda: Integral(exp(-x**2), 3))
    pytest.raises(ValueError, lambda: Integral(exp(-x**2), (3, -oo, oo)))
示例#34
0
def test_sympyissue_5167():
    f = Function('f')
    assert Integral(Integral(f(x), x), x) == Integral(f(x), x, x)
    assert Integral(f(x)).args == (f(x), Tuple(x))
    assert Integral(Integral(f(x))).args == (f(x), Tuple(x), Tuple(x))
    assert Integral(Integral(f(x)), y).args == (f(x), Tuple(x), Tuple(y))
    assert Integral(Integral(f(x), z), y).args == (f(x), Tuple(z), Tuple(y))
    assert Integral(Integral(Integral(f(x), x), y), z).args == \
        (f(x), Tuple(x), Tuple(y), Tuple(z))
    assert integrate(Integral(f(x), x), x) == Integral(f(x), x, x)
    assert integrate(Integral(f(x), y), x) == y*Integral(f(x), x)
    assert integrate(Integral(f(x), x), y) in [Integral(y*f(x), x), y*Integral(f(x), x)]
    assert integrate(Integral(2, x), x) == x**2
    assert integrate(Integral(2, x), y) == 2*x*y
    # don't re-order given limits
    assert Integral(1, x, y).args != Integral(1, y, x).args
    # do as many as possibble
    assert Integral(f(x), y, x, y, x).doit() == y**2*Integral(f(x), x, x)/2
    assert Integral(f(x), (x, 1, 2), (w, 1, x), (z, 1, y)).doit() == \
        y*(x - 1)*Integral(f(x), (x, 1, 2)) - (x - 1)*Integral(f(x), (x, 1, 2))
示例#35
0
def test_as_sum_right():
    e = Integral((x + y)**2, (x, 0, 1))
    assert e.as_sum(1, method='right').expand() == 1 + 2*y + y**2
    assert e.as_sum(2, method='right').expand() == Rational(5, 8) + 3*y/2 + y**2
    assert e.as_sum(3, method='right').expand() == Rational(14, 27) + 4*y/3 + y**2
    assert e.as_sum(4, method='right').expand() == Rational(15, 32) + 5*y/4 + y**2
示例#36
0
def test_expand():
    e = Integral(f(x)+f(x**2), (x, 1, y))
    assert e.expand() == Integral(f(x), (x, 1, y)) + Integral(f(x**2), (x, 1, y))
示例#37
0
def test_sympyissue_5178():
    assert integrate(sin(x)*f(y, z), (x, 0, pi), (y, 0, pi), (z, 0, pi)) == \
        2*Integral(f(y, z), (y, 0, pi), (z, 0, pi))
示例#38
0
def test_as_sum_midpoint2():
    e = Integral((x + y)**2, (x, 0, 1))
    assert e.as_sum(1, method="midpoint").expand() == Rational(1, 4) + y + y**2
    assert e.as_sum(2, method="midpoint").expand() == Rational(5, 16) + y + y**2
    assert e.as_sum(3, method="midpoint").expand() == Rational(35, 108) + y + y**2
    assert e.as_sum(4, method="midpoint").expand() == Rational(21, 64) + y + y**2
示例#39
0
# Some of the pretty forms shown denote how the expressions just
# above them should look with pretty printing.
N = CoordSysCartesian('N')
C = N.orient_new_axis('C', a, N.k)
v = []
d = []
v.append(Vector.zero)
v.append(N.i)
v.append(-N.i)
v.append(N.i + N.j)
v.append(a * N.i)
v.append(a * N.i - b * N.j)
v.append((a**2 + N.x) * N.i + N.k)
v.append((a**2 + b) * N.i + 3 * (C.y - c) * N.k)
f = Function('f')
v.append(N.j - (Integral(f(b)) - C.x**2) * N.k)
upretty_v_8 = \
"""\
N_j + ⎛   2   ⌠        ⎞ N_k\n\
      ⎜C_x  - ⎮ f(b) db⎟    \n\
      ⎝       ⌡        ⎠    \
"""
pretty_v_8 = \
"""\
N_j + /         /       \\\n\
      |   2    |        |\n\
      |C_x  -  | f(b) db|\n\
      |        |        |\n\
      \\       /         / \
"""
示例#40
0
def test_as_sum_right():
    e = Integral((x + y)**2, (x, 0, 1))
    assert e.as_sum(1, method="right").expand() == 1 + 2*y + y**2
    assert e.as_sum(2, method="right").expand() == Rational(5, 8) + 3*y/2 + y**2
    assert e.as_sum(3, method="right").expand() == Rational(14, 27) + 4*y/3 + y**2
    assert e.as_sum(4, method="right").expand() == Rational(15, 32) + 5*y/4 + y**2
示例#41
0
def test_evalf_integral():
    # test that workprec has to increase in order to get a result other than 0
    eps = Rational(1, 1000000)
    assert Integral(sin(x), (x, -pi, pi + eps)).evalf(2)._prec == 10
    assert (Integral(sin(I * x), (x, -pi, pi + eps)).evalf(2) / I)._prec == 10
示例#42
0
def test_nested_doit():
    e = Integral(Integral(x, x), x)
    f = Integral(x, x, x)
    assert e.doit() == f.doit()
示例#43
0
def test_order_symbols():
    e = x * y * sin(x) * Integral(x, (x, 1, 2))
    assert O(e) == O(x**2 * y)
    assert O(e, x) == O(x**2)
示例#44
0
def test_meijerint():
    s, t, mu = symbols('s t mu', extended_real=True)
    assert integrate(
        meijerg([], [], [0], [], s * t) *
        meijerg([], [], [mu / 2], [-mu / 2], t**2 / 4),
        (t, 0, oo)).is_Piecewise
    s = symbols('s', positive=True)
    assert integrate(x**s*meijerg([[], []], [[0], []], x), (x, 0, oo)) == \
        gamma(s + 1)
    assert integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                     meijerg=True) == gamma(s + 1)
    assert isinstance(
        integrate(x**s * meijerg([[], []], [[0], []], x), (x, 0, oo),
                  meijerg=False), Integral)

    assert meijerint_indefinite(exp(x), x) == exp(x)

    # issue sympy/sympy#8368
    assert meijerint_indefinite(
        cosh(x) * exp(-x * t),
        x) == ((-t - 1) * exp(x) +
               (-t + 1) * exp(-x)) * exp(-t * x) / 2 / (t**2 - 1)

    # TODO what simplifications should be done automatically?
    # This tests "extra case" for antecedents_1.
    a, b = symbols('a b', positive=True)
    assert simplify(meijerint_definite(x**a, x, 0, b)[0]) == \
        b**(a + 1)/(a + 1)

    # This tests various conditions and expansions:
    meijerint_definite((x + 1)**3 * exp(-x), x, 0, oo) == (16, True)

    # Again, how about simplifications?
    sigma, mu = symbols('sigma mu', positive=True)
    i, c = meijerint_definite(exp(-((x - mu) / (2 * sigma))**2), x, 0, oo)
    assert simplify(i) == sqrt(pi) * sigma * (erf(mu / (2 * sigma)) + 1)
    assert c

    i, _ = meijerint_definite(exp(-mu * x) * exp(sigma * x), x, 0, oo)
    # TODO it would be nice to test the condition
    assert simplify(i) == 1 / (mu - sigma)

    # Test substitutions to change limits
    assert meijerint_definite(exp(x), x, -oo, 2) == (exp(2), True)
    # Note: causes a NaN in _check_antecedents
    assert expand(meijerint_definite(exp(x), x, 0, I)[0]) == exp(I) - 1
    assert expand(meijerint_definite(exp(-x), x, 0, x)[0]) == \
        1 - exp(-exp(I*arg(x))*abs(x))

    # Test -oo to oo
    assert meijerint_definite(exp(-x**2), x, -oo, oo) == (sqrt(pi), True)
    assert meijerint_definite(exp(-abs(x)), x, -oo, oo) == (2, True)
    assert meijerint_definite(exp(-(2*x - 3)**2), x, -oo, oo) == \
        (sqrt(pi)/2, True)
    assert meijerint_definite(exp(-abs(2 * x - 3)), x, -oo, oo) == (1, True)
    assert meijerint_definite(
        exp(-((x - mu) / sigma)**2 / 2) / sqrt(2 * pi * sigma**2), x, -oo,
        oo) == (1, True)

    # Test one of the extra conditions for 2 g-functinos
    assert meijerint_definite(exp(-x) * sin(x), x, 0,
                              oo) == (Rational(1, 2), True)

    # Test a bug
    def res(n):
        return (1 / (1 + x**2)).diff(x, n).subs({x: 1}) * (-1)**n

    for n in range(6):
        assert integrate(exp(-x)*sin(x)*x**n, (x, 0, oo), meijerg=True) == \
            res(n)

    # This used to test trigexpand... now it is done by linear substitution
    assert simplify(integrate(exp(-x) * sin(x + a), (x, 0, oo),
                              meijerg=True)) == sqrt(2) * sin(a + pi / 4) / 2

    # Test the condition 14 from prudnikov.
    # (This is besselj*besselj in disguise, to stop the product from being
    #  recognised in the tables.)
    a, b, s = symbols('a b s')
    assert meijerint_definite(meijerg([], [], [a/2], [-a/2], x/4)
                              * meijerg([], [], [b/2], [-b/2], x/4)*x**(s - 1), x, 0, oo) == \
        (4*2**(2*s - 2)*gamma(-2*s + 1)*gamma(a/2 + b/2 + s)
         / (gamma(-a/2 + b/2 - s + 1)*gamma(a/2 - b/2 - s + 1)
            * gamma(a/2 + b/2 - s + 1)),
            And(0 < -2*re(4*s) + 8, 0 < re(a/2 + b/2 + s), re(2*s) < 1))

    # test a bug
    assert integrate(sin(x**a)*sin(x**b), (x, 0, oo), meijerg=True) == \
        Integral(sin(x**a)*sin(x**b), (x, 0, oo))

    # test better hyperexpand
    assert integrate(exp(-x**2)*log(x), (x, 0, oo), meijerg=True) == \
        (sqrt(pi)*polygamma(0, Rational(1, 2))/4).expand()

    # Test hyperexpand bug.
    n = symbols('n', integer=True)
    assert simplify(integrate(exp(-x)*x**n, x, meijerg=True)) == \
        lowergamma(n + 1, x)

    # Test a bug with argument 1/x
    alpha = symbols('alpha', positive=True)
    assert meijerint_definite((2 - x)**alpha*sin(alpha/x), x, 0, 2) == \
        (sqrt(pi)*alpha*gamma(alpha + 1)*meijerg(((), (alpha/2 + Rational(1, 2),
                                                       alpha/2 + 1)), ((0, 0, Rational(1, 2)), (-Rational(1, 2),)), alpha**2/16)/4, True)

    # test a bug related to 3016
    a, s = symbols('a s', positive=True)
    assert simplify(integrate(x**s*exp(-a*x**2), (x, -oo, oo))) == \
        a**(-s/2 - Rational(1, 2))*((-1)**s + 1)*gamma(s/2 + Rational(1, 2))/2

    # issue sympy/sympy#6348
    assert integrate(exp(I * x) / (1 + x**2),
                     (x, -oo, oo)).simplify().rewrite(exp) == pi * exp(-1)
示例#45
0
def test_subs6():
    e = Integral(x*y, (x, f(x), f(y)))
    assert e.subs({x: 1}) == Integral(x*y, (x, f(1), f(y)))
    assert e.subs({y: 1}) == Integral(x, (x, f(x), f(1)))
    e = Integral(x*y, (x, f(x), f(y)), (y, f(x), f(y)))
    assert e.subs({x: 1}) == Integral(x*y, (x, f(1), f(y)), (y, f(1), f(y)))
    assert e.subs({y: 1}) == Integral(x*y, (x, f(x), f(y)), (y, f(x), f(1)))
    e = Integral(x*y, (x, f(x), f(a)), (y, f(x), f(a)))
    assert e.subs({a: 1}) == Integral(x*y, (x, f(x), f(1)), (y, f(x), f(1)))