示例#1
0
    def initialize_edges(self):
        '''Initialize self.edges and self.leak_flux_matrix attributes.
        
        This method initializes the self.edges attribute based on the v_min,
        v_max, and dv settings, and creates a corresponding leak flux matrix
        based on this voltage discretization.
        '''

        # Voltage edges and leak matrix construction
        self.tau_m = util.discretize_if_needed(self.tau_m)
        if np.sum(self.tau_m.xk <= 0) > 0:
            raise Exception('Negative tau_m values detected: %s' %
                            self.tau_m.xk)  # pragma: no cover

        # Voltage edges and leak matrix construction
        self.edges = util.get_v_edges(self.v_min, self.v_max, self.dv)

        # Different leak matrices for different solvers:
        self.leak_flux_matrix_dict = {}
        self.leak_flux_matrix_dict['dense'] = util.leak_matrix(
            self.edges, self.tau_m)

        # Backward Euler sparse:
        lfm_csrbe = sps.eye(
            np.shape(self.leak_flux_matrix_dict['dense'])[0], format='csr'
        ) - self.simulation.dt * self.leak_flux_matrix_dict['dense']
        M_I, M_J = np.where(np.array(lfm_csrbe) != 0)
        M_val = lfm_csrbe[M_I, M_J]
        self.leak_flux_matrix_dict['sparse'] = (M_I, M_J, M_val)
示例#2
0
    def initialize_edges(self):
        '''Initialize self.edges and self.leak_flux_matrix attributes.
        
        This method initializes the self.edges attribute based on the v_min,
        v_max, and dv settings, and creates a corresponding leak flux matrix
        based on this voltage discretization.
        '''

        # Voltage edges and leak matrix construction
        self.tau_m = util.discretize_if_needed(self.tau_m)
        if np.sum(self.tau_m.xk <= 0) > 0:
            raise Exception('Negative tau_m values detected: %s' % self.tau_m.xk) # pragma: no cover
        
        
        
        
        
        
        # Voltage edges and leak matrix construction
        self.edges = util.get_v_edges(self.v_min, self.v_max, self.dv)
 
        # Different leak matrices for different solvers:
        self.leak_flux_matrix_dict = {}
        self.leak_flux_matrix_dict['dense'] = util.leak_matrix(self.edges, self.tau_m) 
        
        # Backward Euler sparse:
        lfm_csrbe = sps.eye(np.shape(self.leak_flux_matrix_dict['dense'])[0], format='csr') - self.simulation.dt*self.leak_flux_matrix_dict['dense']
        M_I, M_J = np.where(np.array(lfm_csrbe) != 0) 
        M_val = lfm_csrbe[M_I, M_J]
        self.leak_flux_matrix_dict['sparse'] = (M_I, M_J, M_val)
    def initialize_edges(self):
        '''Initialize self.edges and self.leak_flux_matrix attributes.
        
        This method initializes the self.edges attribute based on the v_min,
        v_max, and dv settings, and creates a corresponding leak flux matrix
        based on this voltage discretization.
        '''

        # Voltage edges and leak matrix construction
        self.edges = util.get_v_edges(self.v_min, self.v_max, self.dv)
        self.leak_flux_matrix = util.leak_matrix(self.edges, self.tau_m)
    def initialize_edges(self):
        '''Initialize self.edges and self.leak_flux_matrix attributes.
        
        This method initializes the self.edges attribute based on the v_min,
        v_max, and dv settings, and creates a corresponding leak flux matrix
        based on this voltage discretization.
        '''

        # Voltage edges and leak matrix construction
        self.edges = util.get_v_edges(self.v_min, self.v_max, self.dv)
        self.leak_flux_matrix = util.leak_matrix(self.edges, self.tau_m)
    def initialize_edges(self):
        '''Initialize self.edges and self.leak_flux_matrix attributes.
        
        This method initializes the self.edges attribute based on the v_min,
        v_max, and dv settings, and creates a corresponding leak flux matrix
        based on this voltage discretization.
        '''

        # Voltage edges and leak matrix construction
        self.tau_m = util.discretize_if_needed(self.tau_m)
        if np.sum(self.tau_m.xk <= 0) > 0:
            raise Exception('Negative tau_m values detected: %s' % self.tau_m.xk) # pragma: no cover
        self.edges = util.get_v_edges(self.v_min, self.v_max, self.dv)
        self.leak_flux_matrix = util.leak_matrix(self.edges, self.tau_m)