示例#1
0
def test_cubic_spline_derivative():
    # Test derivative of the cubic spline, as defined in [Mattes03] eq. (3) by
    # comparing the analytical and numerical derivatives
    #
    # [Mattes03] Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K.,
    #            & Eubank, W. PET-CT image registration in the chest using
    #            free-form deformations. IEEE Transactions on Medical Imaging,
    #            22(1), 120-8, 2003.
    in_list = []
    expected = []
    for epsilon in [-1e-9, 0.0, 1e-9]:
        for t in [-2.0, -1.0, 0.0, 1.0, 2.0]:
            x = t + epsilon
            in_list.append(x)
    h = 1e-6
    in_list = np.array(in_list)
    input_h = in_list + h
    s = np.array(cubic_spline(in_list))
    s_h = np.array(cubic_spline(input_h))
    expected = (s_h - s) / h
    actual = cubic_spline_derivative(in_list)
    assert_array_almost_equal(actual, expected)
示例#2
0
def test_cubic_spline_derivative():
    # Test derivative of the cubic spline, as defined in [Mattes03] eq. (3) by
    # comparing the analytical and numerical derivatives
    #
    # [Mattes03] Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K.,
    #            & Eubank, W. PET-CT image registration in the chest using
    #            free-form deformations. IEEE Transactions on Medical Imaging,
    #            22(1), 120-8, 2003.
    in_list = []
    expected = []
    for epsilon in [-1e-9, 0.0, 1e-9]:
        for t in [-2.0, -1.0, 0.0, 1.0, 2.0]:
            x = t + epsilon
            in_list.append(x)
    h = 1e-6
    in_list = np.array(in_list)
    input_h = in_list + h
    s = np.array(cubic_spline(in_list))
    s_h = np.array(cubic_spline(input_h))
    expected = (s_h - s) / h
    actual = cubic_spline_derivative(in_list)
    assert_array_almost_equal(actual, expected)
示例#3
0
def test_cubic_spline():
    # Cubic spline as defined in [Mattes03] eq. (3)
    #
    # [Mattes03] Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K.,
    #            & Eubank, W. PET-CT image registration in the chest using
    #            free-form deformations. IEEE Transactions on Medical Imaging,
    #            22(1), 120-8, 2003.
    in_list = []
    expected = []
    for epsilon in [-1e-9, 0.0, 1e-9]:
        for t in [-2.0, -1.0, 0.0, 1.0, 2.0]:
            x = t + epsilon
            in_list.append(x)
            absx = np.abs(x)
            sqrx = x * x
            if absx < 1:
                expected.append((4.0 - 6 * sqrx + 3.0 * (absx ** 3)) / 6.0)
            elif absx < 2:
                expected.append(((2 - absx) ** 3) / 6.0)
            else:
                expected.append(0.0)
    actual = cubic_spline(np.array(in_list, dtype=np.float64))
    assert_array_almost_equal(actual, np.array(expected, dtype=np.float64))
示例#4
0
def test_cubic_spline():
    # Cubic spline as defined in [Mattes03] eq. (3)
    #
    # [Mattes03] Mattes, D., Haynor, D. R., Vesselle, H., Lewellen, T. K.,
    #            & Eubank, W. PET-CT image registration in the chest using
    #            free-form deformations. IEEE Transactions on Medical Imaging,
    #            22(1), 120-8, 2003.
    in_list = []
    expected = []
    for epsilon in [-1e-9, 0.0, 1e-9]:
        for t in [-2.0, -1.0, 0.0, 1.0, 2.0]:
            x = t + epsilon
            in_list.append(x)
            absx = np.abs(x)
            sqrx = x * x
            if absx < 1:
                expected.append((4.0 - 6 * sqrx + 3.0 * (absx**3)) / 6.0)
            elif absx < 2:
                expected.append(((2 - absx)**3) / 6.0)
            else:
                expected.append(0.0)
    actual = cubic_spline(np.array(in_list, dtype=np.float64))
    assert_array_almost_equal(actual, np.array(expected, dtype=np.float64))
示例#5
0
def test_mattes_densities():
    # Test the computation of the joint intensity distribution
    # using a dense and a sparse set of values
    seed = 1246592
    nbins = 32
    nr = 30
    nc = 35
    ns = 20
    nvals = 50

    for dim in [2, 3]:
        if dim == 2:
            shape = (nr, nc)
            static, moving = create_random_image_pair(shape, nvals, seed)
        else:
            shape = (ns, nr, nc)
            static, moving = create_random_image_pair(shape, nvals, seed)

        # Initialize
        mbase = MattesBase(nbins)
        mbase.setup(static, moving)
        # Get distributions computed by dense sampling
        mbase.update_pdfs_dense(static, moving)
        actual_joint_dense = mbase.joint
        actual_mmarginal_dense = mbase.mmarginal
        actual_smarginal_dense = mbase.smarginal

        # Get distributions computed by sparse sampling
        sval = static.reshape(-1)
        mval = moving.reshape(-1)
        mbase.update_pdfs_sparse(sval, mval)
        actual_joint_sparse = mbase.joint
        actual_mmarginal_sparse = mbase.mmarginal
        actual_smarginal_sparse = mbase.smarginal

        # Compute the expected joint distribution with dense sampling
        expected_joint_dense = np.zeros(shape=(nbins, nbins))
        for index in ndindex(shape):
            sv = mbase.bin_normalize_static(static[index])
            mv = mbase.bin_normalize_moving(moving[index])
            sbin = mbase.bin_index(sv)
            # The spline is centered at mv, will evaluate for all row
            spline_arg = np.array([i - mv for i in range(nbins)])
            contribution = cubic_spline(spline_arg)
            expected_joint_dense[sbin, :] += contribution

        # Compute the expected joint distribution with sparse sampling
        expected_joint_sparse = np.zeros(shape=(nbins, nbins))
        for index in range(sval.shape[0]):
            sv = mbase.bin_normalize_static(sval[index])
            mv = mbase.bin_normalize_moving(mval[index])
            sbin = mbase.bin_index(sv)
            # The spline is centered at mv, will evaluate for all row
            spline_arg = np.array([i - mv for i in range(nbins)])
            contribution = cubic_spline(spline_arg)
            expected_joint_sparse[sbin, :] += contribution

        # Verify joint distributions
        expected_joint_dense /= expected_joint_dense.sum()
        expected_joint_sparse /= expected_joint_sparse.sum()
        assert_array_almost_equal(actual_joint_dense, expected_joint_dense)
        assert_array_almost_equal(actual_joint_sparse, expected_joint_sparse)

        # Verify moving marginals
        expected_mmarginal_dense = expected_joint_dense.sum(0)
        expected_mmarginal_dense /= expected_mmarginal_dense.sum()
        expected_mmarginal_sparse = expected_joint_sparse.sum(0)
        expected_mmarginal_sparse /= expected_mmarginal_sparse.sum()
        assert_array_almost_equal(actual_mmarginal_dense,
                                  expected_mmarginal_dense)
        assert_array_almost_equal(actual_mmarginal_sparse,
                                  expected_mmarginal_sparse)

        # Verify static marginals
        expected_smarginal_dense = expected_joint_dense.sum(1)
        expected_smarginal_dense /= expected_smarginal_dense.sum()
        expected_smarginal_sparse = expected_joint_sparse.sum(1)
        expected_smarginal_sparse /= expected_smarginal_sparse.sum()
        assert_array_almost_equal(actual_smarginal_dense,
                                  expected_smarginal_dense)
        assert_array_almost_equal(actual_smarginal_sparse,
                                  expected_smarginal_sparse)
示例#6
0
def test_mattes_densities():
    # Test the computation of the joint intensity distribution
    # using a dense and a sparse set of values
    seed = 1246592
    nbins = 32
    nr = 30
    nc = 35
    ns = 20
    nvals = 50

    for dim in [2, 3]:
        if dim == 2:
            shape = (nr, nc)
            static, moving = create_random_image_pair(shape, nvals, seed)
        else:
            shape = (ns, nr, nc)
            static, moving = create_random_image_pair(shape, nvals, seed)

        # Initialize
        mbase = MattesBase(nbins)
        mbase.setup(static, moving)
        # Get distributions computed by dense sampling
        mbase.update_pdfs_dense(static, moving)
        actual_joint_dense = mbase.joint
        actual_mmarginal_dense = mbase.mmarginal
        actual_smarginal_dense = mbase.smarginal

        # Get distributions computed by sparse sampling
        sval = static.reshape(-1)
        mval = moving.reshape(-1)
        mbase.update_pdfs_sparse(sval, mval)
        actual_joint_sparse = mbase.joint
        actual_mmarginal_sparse = mbase.mmarginal
        actual_smarginal_sparse = mbase.smarginal

        # Compute the expected joint distribution with dense sampling
        expected_joint_dense = np.zeros(shape=(nbins, nbins))
        for index in ndindex(shape):
            sv = mbase.bin_normalize_static(static[index])
            mv = mbase.bin_normalize_moving(moving[index])
            sbin = mbase.bin_index(sv)
            # The spline is centered at mv, will evaluate for all row
            spline_arg = np.array([i - mv for i in range(nbins)])
            contribution = cubic_spline(spline_arg)
            expected_joint_dense[sbin, :] += contribution

        # Compute the expected joint distribution with sparse sampling
        expected_joint_sparse = np.zeros(shape=(nbins, nbins))
        for index in range(sval.shape[0]):
            sv = mbase.bin_normalize_static(sval[index])
            mv = mbase.bin_normalize_moving(mval[index])
            sbin = mbase.bin_index(sv)
            # The spline is centered at mv, will evaluate for all row
            spline_arg = np.array([i - mv for i in range(nbins)])
            contribution = cubic_spline(spline_arg)
            expected_joint_sparse[sbin, :] += contribution

        # Verify joint distributions
        expected_joint_dense /= expected_joint_dense.sum()
        expected_joint_sparse /= expected_joint_sparse.sum()
        assert_array_almost_equal(actual_joint_dense, expected_joint_dense)
        assert_array_almost_equal(actual_joint_sparse, expected_joint_sparse)

        # Verify moving marginals
        expected_mmarginal_dense = expected_joint_dense.sum(0)
        expected_mmarginal_dense /= expected_mmarginal_dense.sum()
        expected_mmarginal_sparse = expected_joint_sparse.sum(0)
        expected_mmarginal_sparse /= expected_mmarginal_sparse.sum()
        assert_array_almost_equal(actual_mmarginal_dense,
                                  expected_mmarginal_dense)
        assert_array_almost_equal(actual_mmarginal_sparse,
                                  expected_mmarginal_sparse)

        # Verify static marginals
        expected_smarginal_dense = expected_joint_dense.sum(1)
        expected_smarginal_dense /= expected_smarginal_dense.sum()
        expected_smarginal_sparse = expected_joint_sparse.sum(1)
        expected_smarginal_sparse /= expected_smarginal_sparse.sum()
        assert_array_almost_equal(actual_smarginal_dense,
                                  expected_smarginal_dense)
        assert_array_almost_equal(actual_smarginal_sparse,
                                  expected_smarginal_sparse)