def test_whole_brain_slr():
    streams, hdr = nib.trackvis.read(get_fnames('fornix'))
    fornix = [s[0] for s in streams]

    f = Streamlines(fornix)
    f1 = f.copy()
    f2 = f.copy()

    # check translation
    f2._data += np.array([50, 0, 0])

    moved, transform, qb_centroids1, qb_centroids2 = whole_brain_slr(
            f1, f2, x0='affine', verbose=True, rm_small_clusters=2,
            greater_than=0, less_than=np.inf,
            qbx_thr=[5, 2, 1], progressive=False)

    # we can check the quality of registration by comparing the matrices
    # MAM streamline distances before and after SLR
    D12 = bundles_distances_mam(f1, f2)
    D1M = bundles_distances_mam(f1, moved)

    d12_minsum = np.sum(np.min(D12, axis=0))
    d1m_minsum = np.sum(np.min(D1M, axis=0))

    print("distances= ", d12_minsum, " ", d1m_minsum)

    assert_equal(d1m_minsum < d12_minsum, True)

    assert_array_almost_equal(transform[:3, 3], [-50, -0, -0], 2)

    # check rotation

    mat = compose_matrix44([0, 0, 0, 15, 0, 0])

    f3 = f.copy()
    f3 = transform_streamlines(f3, mat)

    moved, transform, qb_centroids1, qb_centroids2 = slr_with_qbx(
            f1, f3, verbose=False, rm_small_clusters=1, greater_than=20,
            less_than=np.inf, qbx_thr=[2],
            progressive=True)

    # we can also check the quality by looking at the decomposed transform

    assert_array_almost_equal(decompose_matrix44(transform)[3], -15, 2)

    moved, transform, qb_centroids1, qb_centroids2 = slr_with_qbx(
            f1, f3, verbose=False, rm_small_clusters=1, select_random=400,
            greater_than=20, less_than=np.inf, qbx_thr=[2],
            progressive=True)

    # we can also check the quality by looking at the decomposed transform

    assert_array_almost_equal(decompose_matrix44(transform)[3], -15, 2)
示例#2
0
    def run(self,
            static_files,
            moving_files,
            x0='affine',
            rm_small_clusters=50,
            qbx_thr=[40, 30, 20, 15],
            num_threads=None,
            greater_than=50,
            less_than=250,
            nb_pts=20,
            progressive=True,
            out_dir='',
            out_moved='moved.trk',
            out_affine='affine.txt',
            out_stat_centroids='static_centroids.trk',
            out_moving_centroids='moving_centroids.trk',
            out_moved_centroids='moved_centroids.trk'):
        """ Streamline-based linear registration.

        For efficiency we apply the registration on cluster centroids and
        remove small clusters.

        Parameters
        ----------
        static_files : string
        moving_files : string
        x0 : string, optional
            rigid, similarity or affine transformation model (default affine)
        rm_small_clusters : int, optional
            Remove clusters that have less than `rm_small_clusters`
            (default 50)
        qbx_thr : variable int, optional
            Thresholds for QuickBundlesX (default [40, 30, 20, 15])
        num_threads : int, optional
            Number of threads. If None (default) then all available threads
            will be used. Only metrics using OpenMP will use this variable.
        greater_than : int, optional
            Keep streamlines that have length greater than
            this value (default 50)
        less_than : int, optional
            Keep streamlines have length less than this value (default 250)
        np_pts : int, optional
            Number of points for discretizing each streamline (default 20)
        progressive : boolean, optional
            (default True)
        out_dir : string, optional
            Output directory (default input file directory)
        out_moved : string, optional
            Filename of moved tractogram (default 'moved.trk')
        out_affine : string, optional
            Filename of affine for SLR transformation (default 'affine.txt')
        out_stat_centroids : string, optional
            Filename of static centroids (default 'static_centroids.trk')
        out_moving_centroids : string, optional
            Filename of moving centroids (default 'moving_centroids.trk')
        out_moved_centroids : string, optional
            Filename of moved centroids (default 'moved_centroids.trk')

        Notes
        -----
        The order of operations is the following. First short or long
        streamlines are removed. Second the tractogram or a random selection
        of the tractogram is clustered with QuickBundlesX. Then SLR
        [Garyfallidis15]_ is applied.

        References
        ----------
        .. [Garyfallidis15] Garyfallidis et al. "Robust and efficient linear
        registration of white-matter fascicles in the space of
        streamlines", NeuroImage, 117, 124--140, 2015

        .. [Garyfallidis14] Garyfallidis et al., "Direct native-space fiber
        bundle alignment for group comparisons", ISMRM, 2014.

        .. [Garyfallidis17] Garyfallidis et al. Recognition of white matter
        bundles using local and global streamline-based registration
        and clustering, NeuroImage, 2017.
        """
        io_it = self.get_io_iterator()

        logging.info("QuickBundlesX clustering is in use")
        logging.info('QBX thresholds {0}'.format(qbx_thr))

        for static_file, moving_file, out_moved_file, out_affine_file, \
                static_centroids_file, moving_centroids_file, \
                moved_centroids_file in io_it:

            logging.info('Loading static file {0}'.format(static_file))
            logging.info('Loading moving file {0}'.format(moving_file))

            static_obj = nib.streamlines.load(static_file)
            moving_obj = nib.streamlines.load(moving_file)

            static, static_header = static_obj.streamlines, static_obj.header
            moving, moving_header = moving_obj.streamlines, moving_obj.header

            moved, affine, centroids_static, centroids_moving = \
                slr_with_qbx(
                    static, moving, x0, rm_small_clusters=rm_small_clusters,
                    greater_than=greater_than, less_than=less_than,
                    qbx_thr=qbx_thr)

            logging.info('Saving output file {0}'.format(out_moved_file))
            new_tractogram = nib.streamlines.Tractogram(
                moved, affine_to_rasmm=np.eye(4))
            nib.streamlines.save(new_tractogram,
                                 out_moved_file,
                                 header=moving_header)

            logging.info('Saving output file {0}'.format(out_affine_file))
            np.savetxt(out_affine_file, affine)

            logging.info(
                'Saving output file {0}'.format(static_centroids_file))
            new_tractogram = nib.streamlines.Tractogram(
                centroids_static, affine_to_rasmm=np.eye(4))
            nib.streamlines.save(new_tractogram,
                                 static_centroids_file,
                                 header=static_header)

            logging.info(
                'Saving output file {0}'.format(moving_centroids_file))
            new_tractogram = nib.streamlines.Tractogram(
                centroids_moving, affine_to_rasmm=np.eye(4))
            nib.streamlines.save(new_tractogram,
                                 moving_centroids_file,
                                 header=moving_header)

            centroids_moved = transform_streamlines(centroids_moving, affine)

            logging.info('Saving output file {0}'.format(moved_centroids_file))

            new_tractogram = nib.streamlines.Tractogram(
                centroids_moved, affine_to_rasmm=np.eye(4))
            nib.streamlines.save(new_tractogram,
                                 moved_centroids_file,
                                 header=moving_header)
示例#3
0
def test_whole_brain_slr():
    streams, hdr = nib.trackvis.read(get_fnames('fornix'))
    fornix = [s[0] for s in streams]

    f = Streamlines(fornix)
    f1 = f.copy()
    f2 = f.copy()

    # check translation
    f2._data += np.array([50, 0, 0])

    moved, transform, qb_centroids1, qb_centroids2 = whole_brain_slr(
        f1,
        f2,
        x0='affine',
        verbose=True,
        rm_small_clusters=2,
        greater_than=0,
        less_than=np.inf,
        qbx_thr=[5, 2, 1],
        progressive=False)

    # we can check the quality of registration by comparing the matrices
    # MAM streamline distances before and after SLR
    D12 = bundles_distances_mam(f1, f2)
    D1M = bundles_distances_mam(f1, moved)

    d12_minsum = np.sum(np.min(D12, axis=0))
    d1m_minsum = np.sum(np.min(D1M, axis=0))

    print("distances= ", d12_minsum, " ", d1m_minsum)

    assert_equal(d1m_minsum < d12_minsum, True)

    assert_array_almost_equal(transform[:3, 3], [-50, -0, -0], 2)

    # check rotation

    mat = compose_matrix44([0, 0, 0, 15, 0, 0])

    f3 = f.copy()
    f3 = transform_streamlines(f3, mat)

    moved, transform, qb_centroids1, qb_centroids2 = slr_with_qbx(
        f1,
        f3,
        verbose=False,
        rm_small_clusters=1,
        greater_than=20,
        less_than=np.inf,
        qbx_thr=[2],
        progressive=True)

    # we can also check the quality by looking at the decomposed transform

    assert_array_almost_equal(decompose_matrix44(transform)[3], -15, 2)

    moved, transform, qb_centroids1, qb_centroids2 = slr_with_qbx(
        f1,
        f3,
        verbose=False,
        rm_small_clusters=1,
        select_random=400,
        greater_than=20,
        less_than=np.inf,
        qbx_thr=[2],
        progressive=True)

    # we can also check the quality by looking at the decomposed transform

    assert_array_almost_equal(decompose_matrix44(transform)[3], -15, 2)
示例#4
0
文件: align.py 项目: grlee77/dipy
    def run(self, static_files, moving_files,
            x0='affine',
            rm_small_clusters=50,
            qbx_thr=[40, 30, 20, 15],
            num_threads=None,
            greater_than=50,
            less_than=250,
            nb_pts=20,
            progressive=True,
            out_dir='',
            out_moved='moved.trk',
            out_affine='affine.txt',
            out_stat_centroids='static_centroids.trk',
            out_moving_centroids='moving_centroids.trk',
            out_moved_centroids='moved_centroids.trk'):
        """ Streamline-based linear registration.

        For efficiency we apply the registration on cluster centroids and
        remove small clusters.

        Parameters
        ----------
        static_files : string
        moving_files : string
        x0 : string, optional
            rigid, similarity or affine transformation model (default affine)
        rm_small_clusters : int, optional
            Remove clusters that have less than `rm_small_clusters`
            (default 50)
        qbx_thr : variable int, optional
            Thresholds for QuickBundlesX (default [40, 30, 20, 15])
        num_threads : int, optional
            Number of threads. If None (default) then all available threads
            will be used. Only metrics using OpenMP will use this variable.
        greater_than : int, optional
            Keep streamlines that have length greater than
            this value (default 50)
        less_than : int, optional
            Keep streamlines have length less than this value (default 250)
        np_pts : int, optional
            Number of points for discretizing each streamline (default 20)
        progressive : boolean, optional
            (default True)
        out_dir : string, optional
            Output directory (default input file directory)
        out_moved : string, optional
            Filename of moved tractogram (default 'moved.trk')
        out_affine : string, optional
            Filename of affine for SLR transformation (default 'affine.txt')
        out_stat_centroids : string, optional
            Filename of static centroids (default 'static_centroids.trk')
        out_moving_centroids : string, optional
            Filename of moving centroids (default 'moving_centroids.trk')
        out_moved_centroids : string, optional
            Filename of moved centroids (default 'moved_centroids.trk')

        Notes
        -----
        The order of operations is the following. First short or long
        streamlines are removed. Second the tractogram or a random selection
        of the tractogram is clustered with QuickBundlesX. Then SLR
        [Garyfallidis15]_ is applied.

        References
        ----------
        .. [Garyfallidis15] Garyfallidis et al. "Robust and efficient linear
        registration of white-matter fascicles in the space of
        streamlines", NeuroImage, 117, 124--140, 2015

        .. [Garyfallidis14] Garyfallidis et al., "Direct native-space fiber
        bundle alignment for group comparisons", ISMRM, 2014.

        .. [Garyfallidis17] Garyfallidis et al. Recognition of white matter
        bundles using local and global streamline-based registration
        and clustering, Neuroimage, 2017.
        """
        io_it = self.get_io_iterator()

        logging.info("QuickBundlesX clustering is in use")
        logging.info('QBX thresholds {0}'.format(qbx_thr))

        for static_file, moving_file, out_moved_file, out_affine_file, \
                static_centroids_file, moving_centroids_file, \
                moved_centroids_file in io_it:

            logging.info('Loading static file {0}'.format(static_file))
            logging.info('Loading moving file {0}'.format(moving_file))

            static, static_header = load_trk(static_file)
            moving, moving_header = load_trk(moving_file)

            moved, affine, centroids_static, centroids_moving = \
                slr_with_qbx(
                    static, moving, x0, rm_small_clusters=rm_small_clusters,
                    greater_than=greater_than, less_than=less_than,
                    qbx_thr=qbx_thr)

            logging.info('Saving output file {0}'.format(out_moved_file))
            save_trk(out_moved_file, moved, affine=np.eye(4),
                     header=static_header)

            logging.info('Saving output file {0}'.format(out_affine_file))
            np.savetxt(out_affine_file, affine)

            logging.info('Saving output file {0}'
                         .format(static_centroids_file))
            save_trk(static_centroids_file, centroids_static, affine=np.eye(4),
                     header=static_header)

            logging.info('Saving output file {0}'
                         .format(moving_centroids_file))
            save_trk(moving_centroids_file, centroids_moving,
                     affine=np.eye(4),
                     header=static_header)

            centroids_moved = transform_streamlines(centroids_moving, affine)

            logging.info('Saving output file {0}'
                         .format(moved_centroids_file))
            save_trk(moved_centroids_file, centroids_moved, affine=np.eye(4),
                     header=static_header)