示例#1
0
def test_affreg_defaults():
    # Test all default arguments with an arbitrary transform
    # Select an arbitrary transform (all of them are already tested
    # in test_affreg_all_transforms)
    transform_name = 'TRANSLATION'
    dim = 2
    ttype = (transform_name, dim)
    aff_options = ['mass', 'voxel-origin', 'centers', None, np.eye(dim + 1)]

    for starting_affine in aff_options:
        if dim == 2:
            nslices = 1
        else:
            nslices = 45
        factor = factors[ttype][0]
        sampling_pc = factors[ttype][1]
        transform = regtransforms[ttype]
        id_param = transform.get_identity_parameters()

        static, moving, static_grid2world, moving_grid2world, smask, mmask, T = \
                        setup_random_transform(transform, factor, nslices, 1.0)
        # Sum of absolute differences
        start_sad = np.abs(static - moving).sum()

        metric = None
        x0 = None
        sigmas = None
        scale_factors = None
        level_iters = None
        static_grid2world = None
        moving_grid2world = None
        for ss_sigma_factor in [1.0, None]:
            affreg = imaffine.AffineRegistration(metric,
                                                 level_iters,
                                                 sigmas,
                                                 scale_factors,
                                                 'L-BFGS-B',
                                                 ss_sigma_factor,
                                                 options=None)
            affine_map = affreg.optimize(static, moving, transform, x0,
                                         static_grid2world, moving_grid2world,
                                         starting_affine)
            transformed = affine_map.transform(moving)
            # Sum of absolute differences
            end_sad = np.abs(static - transformed).sum()
            reduction = 1 - end_sad / start_sad
            print("%s>>%f" % (ttype, reduction))
            assert (reduction > 0.9)

            transformed_inv = affine_map.transform_inverse(static)
            # Sum of absolute differences
            end_sad = np.abs(moving - transformed_inv).sum()
            reduction = 1 - end_sad / start_sad
            print("%s>>%f" % (ttype, reduction))
            assert (reduction > 0.9)
示例#2
0
def test_affreg_defaults():
    # Test all default arguments with an arbitrary transform
    # Select an arbitrary transform (all of them are already tested
    # in test_affreg_all_transforms)
    transform_name = 'TRANSLATION'
    dim = 2
    ttype = (transform_name, dim)
    aff_options = ['mass', 'voxel-origin', 'centers', None, np.eye(dim+1)]

    for starting_affine in aff_options:
        if dim == 2:
            nslices = 1
        else:
            nslices = 45
        factor = factors[ttype][0]
        sampling_pc = factors[ttype][1]
        transform = regtransforms[ttype]
        id_param = transform.get_identity_parameters()

        static, moving, static_grid2world, moving_grid2world, smask, mmask, T = \
                        setup_random_transform(transform, factor, nslices, 1.0)
        # Sum of absolute differences
        start_sad = np.abs(static - moving).sum()

        metric = None
        x0 = None
        sigmas = None
        scale_factors = None
        level_iters = None
        static_grid2world = None
        moving_grid2world = None
        for ss_sigma_factor in [1.0, None]:
            affreg = imaffine.AffineRegistration(metric,
                                                 level_iters,
                                                 sigmas,
                                                 scale_factors,
                                                 'L-BFGS-B',
                                                 ss_sigma_factor,
                                                 options=None)
            affine_map = affreg.optimize(static, moving, transform, x0,
                                         static_grid2world, moving_grid2world,
                                         starting_affine)
            transformed = affine_map.transform(moving)
            # Sum of absolute differences
            end_sad = np.abs(static - transformed).sum()
            reduction = 1 - end_sad / start_sad
            print("%s>>%f"%(ttype, reduction))
            assert(reduction > 0.9)

            transformed_inv = affine_map.transform_inverse(static)
            # Sum of absolute differences
            end_sad = np.abs(moving - transformed_inv).sum()
            reduction = 1 - end_sad / start_sad
            print("%s>>%f"%(ttype, reduction))
            assert(reduction > 0.9)
示例#3
0
def test_mi_gradient():
    np.random.seed(2022966)
    # Test the gradient of mutual information
    h = 1e-5
    # Make sure dictionary entries are processed in the same order regardless
    # of the platform. Otherwise any random numbers drawn within the loop would
    # make the test non-deterministic even if we fix the seed before the loop:
    # in this case the samples are drawn with `np.random.randn` below

    for ttype in sorted(factors):
        transform = regtransforms[ttype]
        dim = ttype[1]
        if dim == 2:
            nslices = 1
        else:
            nslices = 45
        factor = factors[ttype][0]
        sampling_proportion = factors[ttype][1]
        theta = factors[ttype][2]
        # Start from a small rotation
        start = regtransforms[('ROTATION', dim)]
        nrot = start.get_number_of_parameters()
        starting_affine = start.param_to_matrix(0.25 * np.random.randn(nrot))
        # Get data (pair of images related to each other by an known transform)
        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 2.0)

        # Prepare a MutualInformationMetric instance
        mi_metric = imaffine.MutualInformationMetric(32, sampling_proportion)
        mi_metric.setup(
            transform,
            static,
            moving,
            starting_affine=starting_affine)
        # Compute the gradient with the implementation under test
        actual = mi_metric.gradient(theta)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty(n, dtype=np.float64)

        val0 = mi_metric.distance(theta)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h
            val1 = mi_metric.distance(dtheta)
            expected[i] = (val1 - val0) / h

        dp = expected.dot(actual)
        enorm = npl.norm(expected)
        anorm = npl.norm(actual)
        nprod = dp / (enorm * anorm)
        assert(nprod >= 0.99)
示例#4
0
def test_mi_gradient():
    np.random.seed(2022966)
    # Test the gradient of mutual information
    h = 1e-5
    # Make sure dictionary entries are processed in the same order regardless
    # of the platform. Otherwise any random numbers drawn within the loop would
    # make the test non-deterministic even if we fix the seed before the loop:
    # in this case the samples are drawn with `np.random.randn` below

    for ttype in sorted(factors):
        transform = regtransforms[ttype]
        dim = ttype[1]
        if dim == 2:
            nslices = 1
        else:
            nslices = 45
        factor = factors[ttype][0]
        sampling_proportion = factors[ttype][1]
        theta = factors[ttype][2]
        # Start from a small rotation
        start = regtransforms[('ROTATION', dim)]
        nrot = start.get_number_of_parameters()
        starting_affine = start.param_to_matrix(0.25 * np.random.randn(nrot))
        # Get data (pair of images related to each other by an known transform)
        static, moving, static_g2w, moving_g2w, smask, mmask, M = \
            setup_random_transform(transform, factor, nslices, 2.0)

        # Prepare a MutualInformationMetric instance
        mi_metric = imaffine.MutualInformationMetric(32, sampling_proportion)
        mi_metric.setup(
            transform,
            static,
            moving,
            starting_affine=starting_affine)
        # Compute the gradient with the implementation under test
        actual = mi_metric.gradient(theta)

        # Compute the gradient using finite-diferences
        n = transform.get_number_of_parameters()
        expected = np.empty(n, dtype=np.float64)

        val0 = mi_metric.distance(theta)
        for i in range(n):
            dtheta = theta.copy()
            dtheta[i] += h
            val1 = mi_metric.distance(dtheta)
            expected[i] = (val1 - val0) / h

        dp = expected.dot(actual)
        enorm = npl.norm(expected)
        anorm = npl.norm(actual)
        nprod = dp / (enorm * anorm)
        assert(nprod >= 0.99)
示例#5
0
def test_affreg_all_transforms():
    # Test affine registration using all transforms with typical settings

    # Make sure dictionary entries are processed in the same order regardless
    # of the platform.
    # Otherwise any random numbers drawn within the loop would make
    # the test non-deterministic even if we fix the seed before the loop.
    # Right now, this test does not draw any samples,
    # but we still sort the entries
    # to prevent future related failures.
    for ttype in sorted(factors):
        dim = ttype[1]
        if dim == 2:
            nslices = 1
        else:
            nslices = 45
        factor = factors[ttype][0]
        sampling_pc = factors[ttype][1]
        transform = regtransforms[ttype]
        static, moving, static_grid2world, moving_grid2world, smask, mmask, T = \
            setup_random_transform(transform, factor, nslices, 1.0)
        # Sum of absolute differences
        start_sad = np.abs(static - moving).sum()
        metric = imaffine.MutualInformationMetric(32, sampling_pc)
        affreg = imaffine.AffineRegistration(metric,
                                             [1000, 100, 50],
                                             [3, 1, 0],
                                             [4, 2, 1],
                                             'L-BFGS-B',
                                             None,
                                             options=None)
        x0 = transform.get_identity_parameters()
        affine_map = affreg.optimize(static, moving, transform, x0,
                                     static_grid2world, moving_grid2world)
        transformed = affine_map.transform(moving)
        # Sum of absolute differences
        end_sad = np.abs(static - transformed).sum()
        reduction = 1 - end_sad / start_sad
        print("%s>>%f" % (ttype, reduction))
        assert(reduction > 0.9)

    # Verify that exception is raised if level_iters is empty
    metric = imaffine.MutualInformationMetric(32)
    assert_raises(ValueError, imaffine.AffineRegistration, metric, [])
示例#6
0
def test_affreg_all_transforms():
    # Test affine registration using all transforms with typical settings

    # Make sure dictionary entries are processed in the same order regardless
    # of the platform.
    # Otherwise any random numbers drawn within the loop would make
    # the test non-deterministic even if we fix the seed before the loop.
    # Right now, this test does not draw any samples,
    # but we still sort the entries
    # to prevent future related failures.
    for ttype in sorted(factors):
        dim = ttype[1]
        if dim == 2:
            nslices = 1
        else:
            nslices = 45
        factor = factors[ttype][0]
        sampling_pc = factors[ttype][1]
        transform = regtransforms[ttype]
        static, moving, static_grid2world, moving_grid2world, smask, mmask, T = \
            setup_random_transform(transform, factor, nslices, 1.0)
        # Sum of absolute differences
        start_sad = np.abs(static - moving).sum()
        metric = imaffine.MutualInformationMetric(32, sampling_pc)
        affreg = imaffine.AffineRegistration(metric,
                                             [1000, 100, 50],
                                             [3, 1, 0],
                                             [4, 2, 1],
                                             'L-BFGS-B',
                                             None,
                                             options=None)
        x0 = transform.get_identity_parameters()
        affine_map = affreg.optimize(static, moving, transform, x0,
                                     static_grid2world, moving_grid2world)
        transformed = affine_map.transform(moving)
        # Sum of absolute differences
        end_sad = np.abs(static - transformed).sum()
        reduction = 1 - end_sad / start_sad
        print("%s>>%f" % (ttype, reduction))
        assert(reduction > 0.9)

    # Verify that exception is raised if level_iters is empty
    metric = imaffine.MutualInformationMetric(32)
    assert_raises(ValueError, imaffine.AffineRegistration, metric, [])
示例#7
0
def test_image_registration():
    with TemporaryDirectory() as temp_out_dir:

        static, moving, static_g2w, moving_g2w, smask, mmask, M\
            = setup_random_transform(transform=regtransforms[('AFFINE', 3)],
                                     rfactor=0.1)

        save_nifti(pjoin(temp_out_dir, 'b0.nii.gz'),
                   data=static,
                   affine=static_g2w)
        save_nifti(pjoin(temp_out_dir, 't1.nii.gz'),
                   data=moving,
                   affine=moving_g2w)

        static_image_file = pjoin(temp_out_dir, 'b0.nii.gz')
        moving_image_file = pjoin(temp_out_dir, 't1.nii.gz')

        image_registration_flow = ImageRegistrationFlow()

        def read_distance(qual_fname):
            temp_val = 0
            with open(pjoin(temp_out_dir, qual_fname), 'r') as f:
                temp_val = f.readlines()[-1]
            return float(temp_val)

        def test_com():

            out_moved = pjoin(temp_out_dir, "com_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "com_affine.txt")

            image_registration_flow._force_overwrite = True
            image_registration_flow.run(static_image_file,
                                        moving_image_file,
                                        transform='com',
                                        out_dir=temp_out_dir,
                                        out_moved=out_moved,
                                        out_affine=out_affine)
            check_existence(out_moved, out_affine)

        def test_translation():

            out_moved = pjoin(temp_out_dir, "trans_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "trans_affine.txt")

            image_registration_flow._force_overwrite = True
            image_registration_flow.run(static_image_file,
                                        moving_image_file,
                                        transform='trans',
                                        out_dir=temp_out_dir,
                                        out_moved=out_moved,
                                        out_affine=out_affine,
                                        save_metric=True,
                                        level_iters=[100, 10, 1],
                                        out_quality='trans_q.txt')

            dist = read_distance('trans_q.txt')
            npt.assert_almost_equal(float(dist), -0.3953547764454917, 1)
            check_existence(out_moved, out_affine)

        def test_rigid():

            out_moved = pjoin(temp_out_dir, "rigid_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "rigid_affine.txt")

            image_registration_flow._force_overwrite = True
            image_registration_flow.run(static_image_file,
                                        moving_image_file,
                                        transform='rigid',
                                        out_dir=temp_out_dir,
                                        out_moved=out_moved,
                                        out_affine=out_affine,
                                        save_metric=True,
                                        level_iters=[100, 10, 1],
                                        out_quality='rigid_q.txt')

            dist = read_distance('rigid_q.txt')
            npt.assert_almost_equal(dist, -0.6900534794005155, 1)
            check_existence(out_moved, out_affine)

        def test_rigid_isoscaling():

            out_moved = pjoin(temp_out_dir, "rigid_isoscaling_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "rigid_isoscaling_affine.txt")

            image_registration_flow._force_overwrite = True
            image_registration_flow.run(static_image_file,
                                        moving_image_file,
                                        transform='rigid_isoscaling',
                                        out_dir=temp_out_dir,
                                        out_moved=out_moved,
                                        out_affine=out_affine,
                                        save_metric=True,
                                        level_iters=[100, 10, 1],
                                        out_quality='rigid_isoscaling_q.txt')

            dist = read_distance('rigid_isoscaling_q.txt')
            npt.assert_almost_equal(dist, -0.6960044668271375, 1)
            check_existence(out_moved, out_affine)

        def test_rigid_scaling():

            out_moved = pjoin(temp_out_dir, "rigid_scaling_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "rigid_scaling_affine.txt")

            image_registration_flow._force_overwrite = True
            image_registration_flow.run(static_image_file,
                                        moving_image_file,
                                        transform='rigid_scaling',
                                        out_dir=temp_out_dir,
                                        out_moved=out_moved,
                                        out_affine=out_affine,
                                        save_metric=True,
                                        level_iters=[100, 10, 1],
                                        out_quality='rigid_scaling_q.txt')

            dist = read_distance('rigid_scaling_q.txt')
            npt.assert_almost_equal(dist, -0.698688892993124, 1)
            check_existence(out_moved, out_affine)

        def test_affine():

            out_moved = pjoin(temp_out_dir, "affine_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "affine_affine.txt")

            image_registration_flow._force_overwrite = True
            image_registration_flow.run(static_image_file,
                                        moving_image_file,
                                        transform='affine',
                                        out_dir=temp_out_dir,
                                        out_moved=out_moved,
                                        out_affine=out_affine,
                                        save_metric=True,
                                        level_iters=[100, 10, 1],
                                        out_quality='affine_q.txt')

            dist = read_distance('affine_q.txt')
            npt.assert_almost_equal(dist, -0.7670650775914811, 1)
            check_existence(out_moved, out_affine)

        # Creating the erroneous behavior
        def test_err():
            image_registration_flow._force_overwrite = True
            npt.assert_raises(ValueError,
                              image_registration_flow.run,
                              static_image_file,
                              moving_image_file,
                              transform='notransform')

            image_registration_flow._force_overwrite = True
            npt.assert_raises(ValueError,
                              image_registration_flow.run,
                              static_image_file,
                              moving_image_file,
                              metric='wrong_metric')

        def check_existence(movedfile, affine_mat_file):
            assert os.path.exists(movedfile)
            assert os.path.exists(affine_mat_file)
            return True

        test_com()
        test_translation()
        test_rigid()
        test_rigid_isoscaling()
        test_rigid_scaling()
        test_affine()
        test_err()
示例#8
0
def test_apply_affine_transform():
    with TemporaryDirectory() as temp_out_dir:

        factors = {
            ('TRANSLATION', 3): (2.0, None, np.array([2.3, 4.5, 1.7])),
            ('RIGID', 3):
            (0.1, None, np.array([0.1, 0.15, -0.11, 2.3, 4.5, 1.7])),
            ('RIGIDISOSCALING', 3):
            (0.1, None, np.array([0.1, 0.15, -0.11, 2.3, 4.5, 1.7, 0.8])),
            ('RIGIDSCALING', 3):
            (0.1, None,
             np.array([0.1, 0.15, -0.11, 2.3, 4.5, 1.7, 0.8, 0.9, 1.1])),
            ('AFFINE', 3): (0.1, None,
                            np.array([
                                0.99, -0.05, 0.03, 1.3, 0.05, 0.99, -0.10, 2.5,
                                -0.07, 0.10, 0.99, -1.4
                            ]))
        }

        image_registration_flow = ImageRegistrationFlow()
        apply_trans = ApplyTransformFlow()

        for i in factors.keys():
            static, moving, static_g2w, moving_g2w, smask, mmask, M = \
                setup_random_transform(transform=regtransforms[i],
                                       rfactor=factors[i][0])

            stat_file = str(i[0]) + '_static.nii.gz'
            mov_file = str(i[0]) + '_moving.nii.gz'

            save_nifti(pjoin(temp_out_dir, stat_file),
                       data=static,
                       affine=static_g2w)

            save_nifti(pjoin(temp_out_dir, mov_file),
                       data=moving,
                       affine=moving_g2w)

            static_image_file = pjoin(temp_out_dir,
                                      str(i[0]) + '_static.nii.gz')
            moving_image_file = pjoin(temp_out_dir,
                                      str(i[0]) + '_moving.nii.gz')

            out_moved = pjoin(temp_out_dir, str(i[0]) + "_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, str(i[0]) + "_affine.txt")

            if str(i[0]) == "TRANSLATION":
                transform_type = "trans"
            elif str(i[0]) == "RIGIDISOSCALING":
                transform_type = "rigid_isoscaling"
            elif str(i[0]) == "RIGIDSCALING":
                transform_type = "rigid_scaling"
            else:
                transform_type = str(i[0]).lower()

            image_registration_flow.run(static_image_file,
                                        moving_image_file,
                                        transform=transform_type,
                                        out_dir=temp_out_dir,
                                        out_moved=out_moved,
                                        out_affine=out_affine,
                                        level_iters=[1, 1, 1],
                                        save_metric=False)

            # Checking for the created moved file.
            assert os.path.exists(out_moved)
            assert os.path.exists(out_affine)

        images = pjoin(temp_out_dir, '*moving*')
        apply_trans.run(static_image_file,
                        images,
                        out_dir=temp_out_dir,
                        transform_map_file=out_affine)

        # Checking for the transformed file.
        assert os.path.exists(pjoin(temp_out_dir, "transformed.nii.gz"))
示例#9
0
def test_image_registration():
    with TemporaryDirectory() as temp_out_dir:

        static, moving, static_g2w, moving_g2w, smask, mmask, M\
            = setup_random_transform(transform=regtransforms[('AFFINE', 3)],
                                     rfactor=0.1)

        save_nifti(pjoin(temp_out_dir, 'b0.nii.gz'), data=static,
                   affine=static_g2w)
        save_nifti(pjoin(temp_out_dir, 't1.nii.gz'), data=moving,
                   affine=moving_g2w)

        static_image_file = pjoin(temp_out_dir, 'b0.nii.gz')
        moving_image_file = pjoin(temp_out_dir, 't1.nii.gz')

        image_registeration_flow = ImageRegistrationFlow()

        def read_distance(qual_fname):
            temp_val = 0
            with open(pjoin(temp_out_dir, qual_fname), 'r') as f:
                temp_val = f.readlines()[-1]
            return float(temp_val)

        def test_com():

            out_moved = pjoin(temp_out_dir, "com_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "com_affine.txt")

            image_registeration_flow._force_overwrite = True
            image_registeration_flow.run(static_image_file,
                                         moving_image_file,
                                         transform='com',
                                         out_dir=temp_out_dir,
                                         out_moved=out_moved,
                                         out_affine=out_affine)
            check_existence(out_moved, out_affine)

        def test_translation():

            out_moved = pjoin(temp_out_dir, "trans_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "trans_affine.txt")

            image_registeration_flow._force_overwrite = True
            image_registeration_flow.run(static_image_file,
                                         moving_image_file,
                                         transform='trans',
                                         out_dir=temp_out_dir,
                                         out_moved=out_moved,
                                         out_affine=out_affine,
                                         save_metric=True,
                                         level_iters=[100, 10, 1],
                                         out_quality='trans_q.txt')

            dist = read_distance('trans_q.txt')
            npt.assert_almost_equal(float(dist), -0.3953547764454917, 1)
            check_existence(out_moved, out_affine)

        def test_rigid():

            out_moved = pjoin(temp_out_dir, "rigid_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "rigid_affine.txt")

            image_registeration_flow._force_overwrite = True
            image_registeration_flow.run(static_image_file,
                                         moving_image_file,
                                         transform='rigid',
                                         out_dir=temp_out_dir,
                                         out_moved=out_moved,
                                         out_affine=out_affine,
                                         save_metric=True,
                                         level_iters=[100, 10, 1],
                                         out_quality='rigid_q.txt')

            dist = read_distance('rigid_q.txt')
            npt.assert_almost_equal(dist, -0.6900534794005155, 1)
            check_existence(out_moved, out_affine)

        def test_affine():

            out_moved = pjoin(temp_out_dir, "affine_moved.nii.gz")
            out_affine = pjoin(temp_out_dir, "affine_affine.txt")

            image_registeration_flow._force_overwrite = True
            image_registeration_flow.run(static_image_file,
                                         moving_image_file,
                                         transform='affine',
                                         out_dir=temp_out_dir,
                                         out_moved=out_moved,
                                         out_affine=out_affine,
                                         save_metric=True,
                                         level_iters=[100, 10, 1],
                                         out_quality='affine_q.txt')

            dist = read_distance('affine_q.txt')
            npt.assert_almost_equal(dist, -0.7670650775914811, 1)
            check_existence(out_moved, out_affine)

        # Creating the erroneous behavior
        def test_err():
            image_registeration_flow._force_overwrite = True
            npt.assert_raises(ValueError, image_registeration_flow.run,
                              static_image_file,
                              moving_image_file,
                              transform='notransform')

            image_registeration_flow._force_overwrite = True
            npt.assert_raises(ValueError, image_registeration_flow.run,
                              static_image_file,
                              moving_image_file,
                              metric='wrong_metric')

        def check_existence(movedfile, affine_mat_file):
            assert os.path.exists(movedfile)
            assert os.path.exists(affine_mat_file)
            return True

        test_com()
        test_translation()
        test_rigid()
        test_affine()
        test_err()
示例#10
0
def test_apply_affine_transform():
    with TemporaryDirectory() as temp_out_dir:

        factors = {
            ('TRANSLATION', 3): (2.0, None, np.array([2.3, 4.5, 1.7])),
            ('RIGID', 3): (0.1, None, np.array([0.1, 0.15, -0.11, 2.3, 4.5,
                                                1.7])),
            ('AFFINE', 3): (0.1, None, np.array([0.99, -0.05, 0.03, 1.3,
                                                 0.05, 0.99, -0.10, 2.5,
                                                 -0.07, 0.10, 0.99, -1.4]))}

        image_registeration_flow = ImageRegistrationFlow()
        apply_trans = ApplyTransformFlow()

        for i in factors.keys():
            static, moving, static_g2w, moving_g2w, smask, mmask, M = \
                setup_random_transform(transform=regtransforms[i],
                                       rfactor=factors[i][0])

            stat_file = str(i[0]) + '_static.nii.gz'
            mov_file = str(i[0]) + '_moving.nii.gz'

            save_nifti(pjoin(temp_out_dir, stat_file), data=static,
                       affine=static_g2w)

            save_nifti(pjoin(temp_out_dir, mov_file), data=moving,
                       affine=moving_g2w)

            static_image_file = pjoin(temp_out_dir,
                                      str(i[0]) + '_static.nii.gz')
            moving_image_file = pjoin(temp_out_dir,
                                      str(i[0]) + '_moving.nii.gz')

            out_moved = pjoin(temp_out_dir,
                              str(i[0]) + "_moved.nii.gz")
            out_affine = pjoin(temp_out_dir,
                               str(i[0]) + "_affine.txt")

            if str(i[0]) == "TRANSLATION":
                transform_type = "trans"
            else:
                transform_type = str(i[0]).lower()

            image_registeration_flow.run(static_image_file, moving_image_file,
                                         transform=transform_type,
                                         out_dir=temp_out_dir,
                                         out_moved=out_moved,
                                         out_affine=out_affine,
                                         level_iters=[1, 1, 1],
                                         save_metric=False)

            # Checking for the created moved file.
            assert os.path.exists(out_moved)
            assert os.path.exists(out_affine)

        images = pjoin(temp_out_dir, '*moving*')
        apply_trans.run(static_image_file, images,
                        out_dir=temp_out_dir,
                        transform_map_file=out_affine)

        # Checking for the transformed file.
        assert os.path.exists(pjoin(temp_out_dir, "transformed.nii.gz"))