示例#1
0
def test_forecast_csd():
    sphere = get_sphere('repulsion100')
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           dec_alg='CSD',
                           sphere=data.sphere,
                           lambda_csd=data.lambda_csd)
    f_fit = fm.fit(data.S)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf_csd = f_fit.odf(sphere, clip_negative=False)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=data.sh_order,
                           lambda_lb=data.lambda_lb,
                           dec_alg='WLS')
    f_fit = fm.fit(data.S)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf_wls = f_fit.odf(sphere, clip_negative=False)

    value = fodf_wls[fodf_wls < 0].sum() < fodf_csd[fodf_csd < 0].sum()
    assert_equal(value, 1)
示例#2
0
def test_forecast_odf():
    # check FORECAST fODF at different SH order
    fm = ForecastModel(data.gtab,
                       sh_order=4,
                       dec_alg='CSD',
                       sphere=data.sphere)
    f_fit = fm.fit(data.S)
    sphere = default_sphere
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab,
                       sh_order=6,
                       dec_alg='CSD',
                       sphere=data.sphere)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab,
                       sh_order=8,
                       dec_alg='CSD',
                       sphere=data.sphere)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    # stronger regularization is required for high order SH
    fm = ForecastModel(data.gtab,
                       sh_order=10,
                       dec_alg='CSD',
                       sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab,
                       sh_order=12,
                       dec_alg='CSD',
                       sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)
示例#3
0
def test_forecast_indices():
    # check anisotropic tensor
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=2,
                           lambda_lb=data.lambda_lb,
                           dec_alg='WLS')
    f_fit = fm.fit(data.S)

    d_par = f_fit.dpar
    d_perp = f_fit.dperp

    assert_almost_equal(d_par, data.mevals[0, 0], 5)
    assert_almost_equal(d_perp, data.mevals[0, 1], 5)

    gt_fa = np.sqrt(0.5 * (2 * (data.mevals[0, 0] - data.mevals[0, 1])**2) /
                    (data.mevals[0, 0]**2 + 2 * data.mevals[0, 1]**2))
    gt_md = (data.mevals[0, 0] + 2 * data.mevals[0, 1]) / 3.0

    assert_almost_equal(f_fit.fractional_anisotropy(), gt_fa, 2)
    assert_almost_equal(f_fit.mean_diffusivity(), gt_md, 5)

    # check isotropic tensor
    mevals = np.array(([0.003, 0.003, 0.003], [0.003, 0.003, 0.003]))
    data.angl = [(0, 0), (60, 0)]
    S, sticks = multi_tensor(data.gtab,
                             mevals,
                             S0=100.0,
                             angles=data.angl,
                             fractions=[50, 50],
                             snr=None)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=data.sh_order,
                           lambda_lb=data.lambda_lb,
                           dec_alg='WLS')
    f_fit = fm.fit(S)

    d_par = f_fit.dpar
    d_perp = f_fit.dperp

    assert_almost_equal(d_par, 3e-03, 5)
    assert_almost_equal(d_perp, 3e-03, 5)
    assert_almost_equal(f_fit.fractional_anisotropy(), 0.0, 5)
    assert_almost_equal(f_fit.mean_diffusivity(), 3e-03, 10)
示例#4
0
def test_forecast_csd():
    sphere = get_sphere('repulsion100')
    fm = ForecastModel(data.gtab, dec_alg='CSD',
                       sphere=data.sphere, lambda_csd=data.lambda_csd)
    f_fit = fm.fit(data.S)
    fodf_csd = f_fit.odf(sphere, clip_negative=False)

    fm = ForecastModel(data.gtab, sh_order=data.sh_order,
                       lambda_lb=data.lambda_lb, dec_alg='WLS')
    f_fit = fm.fit(data.S)
    fodf_wls = f_fit.odf(sphere, clip_negative=False)

    value = fodf_wls[fodf_wls < 0].sum() < fodf_csd[fodf_csd < 0].sum()
    assert_equal(value, 1)
示例#5
0
def test_forecast_csd():
    sphere = get_sphere('repulsion100')
    fm = ForecastModel(data.gtab, dec_alg='CSD',
                       sphere=data.sphere, lambda_csd=data.lambda_csd)
    f_fit = fm.fit(data.S)
    fodf_csd = f_fit.odf(sphere, clip_negative=False)

    fm = ForecastModel(data.gtab, sh_order=data.sh_order,
                       lambda_lb=data.lambda_lb, dec_alg='WLS')
    f_fit = fm.fit(data.S)
    fodf_wls = f_fit.odf(sphere, clip_negative=False)

    value = fodf_wls[fodf_wls < 0].sum() < fodf_csd[fodf_csd < 0].sum()
    assert_equal(value, 1)
示例#6
0
def test_forecast_odf():
    # check FORECAST fODF at different SH order
    fm = ForecastModel(data.gtab, sh_order=4,
                       dec_alg='CSD', sphere=data.sphere)
    f_fit = fm.fit(data.S)
    sphere = get_sphere('repulsion724')
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab, sh_order=6,
                       dec_alg='CSD', sphere=data.sphere)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab, sh_order=8,
                       dec_alg='CSD', sphere=data.sphere)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)

    # stronger regularization is required for high order SH
    fm = ForecastModel(data.gtab, sh_order=10,
                       dec_alg='CSD', sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)

    fm = ForecastModel(data.gtab, sh_order=12,
                       dec_alg='CSD', sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(
        angular_similarity(directions, data.sticks), 2, 1)
示例#7
0
def test_multivox_forecast():
    gtab = get_3shell_gtab()
    mevals = np.array(([0.0017, 0.0003, 0.0003],
                       [0.0017, 0.0003, 0.0003]))

    angl1 = [(0, 0), (60, 0)]
    angl2 = [(90, 0), (45, 90)]
    angl3 = [(0, 0), (90, 0)]

    S = np.zeros((3, 1, 1, len(gtab.bvals)))
    S[0, 0, 0], _ = multi_tensor(gtab, mevals, S0=1.0, angles=angl1,
                                 fractions=[50, 50], snr=None)
    S[1, 0, 0], _ = multi_tensor(gtab, mevals, S0=1.0, angles=angl2,
                                 fractions=[50, 50], snr=None)
    S[2, 0, 0], _ = multi_tensor(gtab, mevals, S0=1.0, angles=angl3,
                                 fractions=[50, 50], snr=None)

    fm = ForecastModel(gtab, sh_order=8,
                       dec_alg='CSD')
    f_fit = fm.fit(S)

    S_predict = f_fit.predict()

    assert_equal(S_predict.shape, S.shape)

    mse1 = np.sum((S_predict[0, 0, 0]-S[0, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse1, 0.0, 3)

    mse2 = np.sum((S_predict[1, 0, 0]-S[1, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse2, 0.0, 3)

    mse3 = np.sum((S_predict[2, 0, 0]-S[2, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse3, 0.0, 3)
示例#8
0
def test_forecast_indices():
    # check anisotropic tensor
    fm = ForecastModel(data.gtab,
                       sh_order=2,
                       lambda_lb=data.lambda_lb,
                       dec_alg='WLS')
    f_fit = fm.fit(data.S)

    d_par = f_fit.dpar
    d_perp = f_fit.dperp

    assert_almost_equal(d_par, data.mevals[0, 0], 5)
    assert_almost_equal(d_perp, data.mevals[0, 1], 5)

    gt_fa = np.sqrt(0.5 * (2 * (data.mevals[0, 0] - data.mevals[0, 1])**2) /
                    (data.mevals[0, 0]**2 + 2 * data.mevals[0, 1]**2))
    gt_md = (data.mevals[0, 0] + 2 * data.mevals[0, 1]) / 3.0

    assert_almost_equal(f_fit.fractional_anisotropy(), gt_fa, 2)
    assert_almost_equal(f_fit.mean_diffusivity(), gt_md, 5)

    # check isotropic tensor
    mevals = np.array(([0.003, 0.003, 0.003], [0.003, 0.003, 0.003]))
    data.angl = [(0, 0), (60, 0)]
    S, sticks = MultiTensor(data.gtab,
                            mevals,
                            S0=100.0,
                            angles=data.angl,
                            fractions=[50, 50],
                            snr=None)

    fm = ForecastModel(data.gtab,
                       sh_order=data.sh_order,
                       lambda_lb=data.lambda_lb,
                       dec_alg='WLS')
    f_fit = fm.fit(S)

    d_par = f_fit.dpar
    d_perp = f_fit.dperp

    assert_almost_equal(d_par, 3e-03, 5)
    assert_almost_equal(d_perp, 3e-03, 5)
    assert_almost_equal(f_fit.fractional_anisotropy(), 0.0, 5)
    assert_almost_equal(f_fit.mean_diffusivity(), 3e-03, 10)
示例#9
0
def test_forecast_predict():
    # check anisotropic tensor
    fm = ForecastModel(data.gtab, sh_order=8,
                       dec_alg='CSD', sphere=data.sphere)
    f_fit = fm.fit(data.S)

    S = f_fit.predict(S0=1.0)

    mse = np.sum((S-data.S/100.0)**2) / len(S)

    assert_almost_equal(mse, 0.0, 3)
示例#10
0
def test_forecast_predict():
    # check anisotropic tensor
    fm = ForecastModel(data.gtab, sh_order=8,
                       dec_alg='CSD', sphere=data.sphere)
    f_fit = fm.fit(data.S)

    S = f_fit.predict(S0=1.0)

    mse = np.sum((S-data.S/100.0)**2) / len(S)

    assert_almost_equal(mse, 0.0, 3)
示例#11
0
def test_multivox_forecast():
    gtab = get_3shell_gtab()
    mevals = np.array(([0.0017, 0.0003, 0.0003], [0.0017, 0.0003, 0.0003]))

    angl1 = [(0, 0), (60, 0)]
    angl2 = [(90, 0), (45, 90)]
    angl3 = [(0, 0), (90, 0)]

    S = np.zeros((3, 1, 1, len(gtab.bvals)))
    S[0, 0, 0], _ = multi_tensor(gtab,
                                 mevals,
                                 S0=1.0,
                                 angles=angl1,
                                 fractions=[50, 50],
                                 snr=None)
    S[1, 0, 0], _ = multi_tensor(gtab,
                                 mevals,
                                 S0=1.0,
                                 angles=angl2,
                                 fractions=[50, 50],
                                 snr=None)
    S[2, 0, 0], _ = multi_tensor(gtab,
                                 mevals,
                                 S0=1.0,
                                 angles=angl3,
                                 fractions=[50, 50],
                                 snr=None)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(gtab, sh_order=8, dec_alg='CSD')
    f_fit = fm.fit(S)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        S_predict = f_fit.predict()

    assert_equal(S_predict.shape, S.shape)

    mse1 = np.sum((S_predict[0, 0, 0] - S[0, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse1, 0.0, 3)

    mse2 = np.sum((S_predict[1, 0, 0] - S[1, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse2, 0.0, 3)

    mse3 = np.sum((S_predict[2, 0, 0] - S[2, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse3, 0.0, 3)
示例#12
0
def test_forecast_indices():
    # check anisotropic tensor
    fm = ForecastModel(data.gtab, sh_order=2,
                       lambda_lb=data.lambda_lb, dec_alg='WLS')
    f_fit = fm.fit(data.S)

    d_par = f_fit.dpar
    d_perp = f_fit.dperp

    assert_almost_equal(d_par, data.mevals[0, 0], 5)
    assert_almost_equal(d_perp, data.mevals[0, 1], 5)

    gt_fa = np.sqrt(0.5 * (2*(data.mevals[0, 0] - data.mevals[0, 1])**2) / (
        data.mevals[0, 0]**2 + 2*data.mevals[0, 1]**2))
    gt_md = (data.mevals[0, 0] + 2*data.mevals[0, 1])/3.0

    assert_almost_equal(f_fit.fractional_anisotropy(), gt_fa, 2)
    assert_almost_equal(f_fit.mean_diffusivity(), gt_md, 5)

    # check isotropic tensor
    mevals = np.array(([0.003, 0.003, 0.003],
                       [0.003, 0.003, 0.003]))
    data.angl = [(0, 0), (60, 0)]
    S, sticks = MultiTensor(
        data.gtab, mevals, S0=100.0, angles=data.angl,
        fractions=[50, 50], snr=None)

    fm = ForecastModel(data.gtab, sh_order=data.sh_order,
                       lambda_lb=data.lambda_lb, dec_alg='WLS')
    f_fit = fm.fit(S)

    d_par = f_fit.dpar
    d_perp = f_fit.dperp

    assert_almost_equal(d_par, 3e-03, 5)
    assert_almost_equal(d_perp, 3e-03, 5)
    assert_almost_equal(f_fit.fractional_anisotropy(), 0.0, 5)
    assert_almost_equal(f_fit.mean_diffusivity(), 3e-03, 10)
示例#13
0
def test_forecast_positive_constrain():
    fm = ForecastModel(data.gtab,
                       sh_order=data.sh_order,
                       lambda_lb=data.lambda_lb,
                       dec_alg='POS',
                       sphere=data.sphere)
    f_fit = fm.fit(data.S)

    sphere = get_sphere('repulsion100')
    fodf = f_fit.odf(sphere, clip_negative=False)
    assert_almost_equal(fodf[fodf < 0].sum(), 0, 2)

    coeff = f_fit.sh_coeff
    c0 = np.sqrt(1.0/(4*np.pi))
    assert_almost_equal(coeff[0], c0, 5)
示例#14
0
def test_forecast_positive_constrain():
    fm = ForecastModel(data.gtab,
                       sh_order=data.sh_order,
                       lambda_lb=data.lambda_lb,
                       dec_alg='POS',
                       sphere=data.sphere)
    f_fit = fm.fit(data.S)

    sphere = get_sphere('repulsion100')
    fodf = f_fit.odf(sphere, clip_negative=False)
    assert_almost_equal(fodf[fodf < 0].sum(), 0, 2)

    coeff = f_fit.sh_coeff
    c0 = np.sqrt(1.0/(4*np.pi))
    assert_almost_equal(coeff[0], c0, 5)
示例#15
0
def test_forecast_predict():
    # check anisotropic tensor
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=8,
                           dec_alg='CSD',
                           sphere=data.sphere)
    f_fit = fm.fit(data.S)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        S = f_fit.predict(S0=1.0)

    mse = np.sum((S - data.S / 100.0)**2) / len(S)

    assert_almost_equal(mse, 0.0, 3)
示例#16
0
def test_forecast_positive_constrain():
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=data.sh_order,
                           lambda_lb=data.lambda_lb,
                           dec_alg='POS',
                           sphere=data.sphere)
    f_fit = fm.fit(data.S)

    sphere = get_sphere('repulsion100')
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf = f_fit.odf(sphere, clip_negative=False)
    assert_almost_equal(fodf[fodf < 0].sum(), 0, 2)

    coeff = f_fit.sh_coeff
    c0 = np.sqrt(1.0 / (4 * np.pi))
    assert_almost_equal(coeff[0], c0, 5)
示例#17
0
def test_multivox_forecast():
    gtab = get_3shell_gtab()
    mevals = np.array(([0.0017, 0.0003, 0.0003],
                       [0.0017, 0.0003, 0.0003]))

    angl1 = [(0, 0), (60, 0)]
    angl2 = [(90, 0), (45, 90)]
    angl3 = [(0, 0), (90, 0)]

    S = np.zeros((3, 1, 1, len(gtab.bvals)))
    S[0, 0, 0], sticks = MultiTensor(
        gtab, mevals, S0=1.0, angles=angl1,
        fractions=[50, 50], snr=None)
    S[1, 0, 0], sticks = MultiTensor(
        gtab, mevals, S0=1.0, angles=angl2,
        fractions=[50, 50], snr=None)
    S[2, 0, 0], sticks = MultiTensor(
        gtab, mevals, S0=1.0, angles=angl3,
        fractions=[50, 50], snr=None)

    fm = ForecastModel(gtab, sh_order=8,
                       dec_alg='CSD')
    f_fit = fm.fit(S)

    S_predict = f_fit.predict()

    assert_equal(S_predict.shape, S.shape)

    mse1 = np.sum((S_predict[0, 0, 0]-S[0, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse1, 0.0, 3)

    mse2 = np.sum((S_predict[1, 0, 0]-S[1, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse2, 0.0, 3)

    mse3 = np.sum((S_predict[2, 0, 0]-S[2, 0, 0])**2) / len(gtab.bvals)
    assert_almost_equal(mse3, 0.0, 3)
示例#18
0
"""
Instantiate the FORECAST Model.

"sh_order" is the spherical harmonics order used for the fODF.

dec_alg is the spherical deconvolution algorithm used for the FORECAST basis fitting, in this case
we used the Constrained Spherical Deconvolution (CSD) algorithm.
"""

fm = ForecastModel(gtab, sh_order=6, dec_alg='CSD')

"""
Fit the FORECAST to the data
"""

f_fit = fm.fit(data_small, mask_small)

"""
Calculate the crossing invariant tensor indices [Kaden2016]_ : the parallel diffusivity,
the perpendicular diffusivity, the fractional anisotropy and the mean
diffusivity.
"""

d_par = f_fit.dpar
d_perp = f_fit.dperp
fa = f_fit.fractional_anisotropy()
md = f_fit.mean_diffusivity()

"""
Show the indices and save them in FORECAST_indices.png.
"""
示例#19
0
mask_small = data_small[..., 0] > 1000
"""
Instantiate the FORECAST Model.

"sh_order" is the spherical harmonics order used for the fODF.

dec_alg is the spherical deconvolution algorithm used for the FORECAST basis fitting, in this case
we used the Constrained Spherical Deconvolution (CSD) algorithm.
"""

fm = ForecastModel(gtab, sh_order=6, dec_alg='CSD')
"""
Fit the FORECAST to the data
"""

f_fit = fm.fit(data_small, mask_small)
"""
Calculate the crossing invariant tensor indices [Kaden2016]_ : the parallel diffusivity,
the perpendicular diffusivity, the fractional anisotropy and the mean
diffusivity.
"""

d_par = f_fit.dpar
d_perp = f_fit.dperp
fa = f_fit.fractional_anisotropy()
md = f_fit.mean_diffusivity()
"""
Show the indices and save them in FORECAST_indices.png.
"""

fig = plt.figure(figsize=(6, 6))
示例#20
0
def test_forecast_odf():
    # check FORECAST fODF at different SH order
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=4,
                           dec_alg='CSD',
                           sphere=data.sphere)
    f_fit = fm.fit(data.S)
    sphere = default_sphere
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=6,
                           dec_alg='CSD',
                           sphere=data.sphere)
    f_fit = fm.fit(data.S)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=8,
                           dec_alg='CSD',
                           sphere=data.sphere)
    f_fit = fm.fit(data.S)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    # stronger regularization is required for high order SH
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=10,
                           dec_alg='CSD',
                           sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)

    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fm = ForecastModel(data.gtab,
                           sh_order=12,
                           dec_alg='CSD',
                           sphere=sphere.vertices)
    f_fit = fm.fit(data.S)
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore",
                                message=descoteaux07_legacy_msg,
                                category=PendingDeprecationWarning)
        fodf = f_fit.odf(sphere)
    directions, _, _ = peak_directions(fodf, sphere, .35, 25)
    assert_equal(len(directions), 2)
    assert_almost_equal(angular_similarity(directions, data.sticks), 2, 1)