示例#1
0
def test_peaks_shm_coeff():

    SNR = 100
    S0 = 100

    _, fbvals, fbvecs = get_data('small_64D')

    from dipy.data import get_sphere

    sphere = get_sphere('repulsion724')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    data, _ = multi_tensor(gtab,
                           mevals,
                           S0,
                           angles=[(0, 0), (60, 0)],
                           fractions=[50, 50],
                           snr=SNR)

    from dipy.reconst.shm import CsaOdfModel

    model = CsaOdfModel(gtab, 4)

    pam = peaks_from_model(model,
                           data[None, :],
                           sphere,
                           .5,
                           45,
                           return_odf=True,
                           return_sh=True)
    # Test that spherical harmonic coefficients return back correctly
    odf2 = np.dot(pam.shm_coeff, pam.B)
    assert_array_almost_equal(pam.odf, odf2)
    assert_equal(pam.shm_coeff.shape[-1], 45)

    pam = peaks_from_model(model,
                           data[None, :],
                           sphere,
                           .5,
                           45,
                           return_odf=True,
                           return_sh=False)
    assert_equal(pam.shm_coeff, None)

    pam = peaks_from_model(model,
                           data[None, :],
                           sphere,
                           .5,
                           45,
                           return_odf=True,
                           return_sh=True,
                           sh_basis_type='mrtrix')

    odf2 = np.dot(pam.shm_coeff, pam.B)
    assert_array_almost_equal(pam.odf, odf2)
示例#2
0
def test_peaksFromModelParallel():
    SNR = 100
    S0 = 100

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    data, _ = multi_tensor(gtab, mevals, S0, angles=[(0, 0), (60, 0)],
                           fractions=[50, 50], snr=SNR)

    # test equality with/without multiprocessing
    model = SimpleOdfModel(gtab)
    pam_multi = peaks_from_model(model, data, _sphere, .5, 45,
                                 normalize_peaks=True, return_odf=True,
                                 return_sh=True, parallel=True)

    pam_single = peaks_from_model(model, data, _sphere, .5, 45,
                                  normalize_peaks=True, return_odf=True,
                                  return_sh=True, parallel=False)

    assert_equal(pam_multi.gfa.dtype, pam_single.gfa.dtype)
    assert_equal(pam_multi.gfa.shape, pam_single.gfa.shape)
    assert_array_almost_equal(pam_multi.gfa, pam_single.gfa)

    assert_equal(pam_multi.qa.dtype, pam_single.qa.dtype)
    assert_equal(pam_multi.qa.shape, pam_single.qa.shape)
    assert_array_almost_equal(pam_multi.qa, pam_single.qa)

    assert_equal(pam_multi.peak_values.dtype, pam_single.peak_values.dtype)
    assert_equal(pam_multi.peak_values.shape, pam_single.peak_values.shape)
    assert_array_almost_equal(pam_multi.peak_values, pam_single.peak_values)

    assert_equal(pam_multi.peak_indices.dtype, pam_single.peak_indices.dtype)
    assert_equal(pam_multi.peak_indices.shape, pam_single.peak_indices.shape)
    assert_array_equal(pam_multi.peak_indices, pam_single.peak_indices)

    assert_equal(pam_multi.peak_dirs.dtype, pam_single.peak_dirs.dtype)
    assert_equal(pam_multi.peak_dirs.shape, pam_single.peak_dirs.shape)
    assert_array_almost_equal(pam_multi.peak_dirs, pam_single.peak_dirs)

    assert_equal(pam_multi.shm_coeff.dtype, pam_single.shm_coeff.dtype)
    assert_equal(pam_multi.shm_coeff.shape, pam_single.shm_coeff.shape)
    assert_array_almost_equal(pam_multi.shm_coeff, pam_single.shm_coeff)

    assert_equal(pam_multi.odf.dtype, pam_single.odf.dtype)
    assert_equal(pam_multi.odf.shape, pam_single.odf.shape)
    assert_array_almost_equal(pam_multi.odf, pam_single.odf)
示例#3
0
    def _run_interface(self, runtime):
        from dipy.reconst import shm
        from dipy.data import get_sphere
        from dipy.reconst.peaks import peaks_from_model

        gtab = self._get_gradient_table()

        img = nb.load(self.inputs.in_file)
        data = img.get_data()
        affine = img.affine
        mask = None
        if isdefined(self.inputs.mask_file):
            mask = nb.load(self.inputs.mask_file).get_data()

        # Fit it
        model = shm.QballModel(gtab, 8)
        sphere = get_sphere('symmetric724')
        peaks = peaks_from_model(
            model=model,
            data=data,
            relative_peak_threshold=.5,
            min_separation_angle=25,
            sphere=sphere,
            mask=mask)
        apm = shm.anisotropic_power(peaks.shm_coeff)
        out_file = self._gen_filename('apm')
        nb.Nifti1Image(apm.astype("float32"), affine).to_filename(out_file)
        IFLOGGER.info('APM qball image saved as %s', out_file)

        return runtime
示例#4
0
    def _run_interface(self, runtime):
        from dipy.reconst import shm
        from dipy.data import get_sphere
        from dipy.reconst.peaks import peaks_from_model

        gtab = self._get_gradient_table()

        img = nb.load(self.inputs.in_file)
        data = img.get_data()
        affine = img.affine
        mask = None
        if isdefined(self.inputs.mask_file):
            mask = nb.load(self.inputs.mask_file).get_data()

        # Fit it
        model = shm.QballModel(gtab, 8)
        sphere = get_sphere('symmetric724')
        peaks = peaks_from_model(model=model,
                                 data=data,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 sphere=sphere,
                                 mask=mask)
        apm = shm.anisotropic_power(peaks.shm_coeff)
        out_file = self._gen_filename('apm')
        nb.Nifti1Image(apm.astype("float32"), affine).to_filename(out_file)
        IFLOGGER.info('APM qball image saved as %s', out_file)

        return runtime
示例#5
0
def test_peaksFromModel():
    data = np.zeros((10, 2))

    # Test basic case
    model = SimpleOdfModel(_gtab)
    odf_argmax = _odf.argmax()
    pam = peaks_from_model(model, data, _sphere, .5, 45, normalize_peaks=True)

    assert_array_equal(pam.gfa, gfa(_odf))
    assert_array_equal(pam.peak_values[:, 0], 1.)
    assert_array_equal(pam.peak_values[:, 1:], 0.)
    mn, mx = _odf.min(), _odf.max()
    assert_array_equal(pam.qa[:, 0], (mx - mn) / mx)
    assert_array_equal(pam.qa[:, 1:], 0.)
    assert_array_equal(pam.peak_indices[:, 0], odf_argmax)
    assert_array_equal(pam.peak_indices[:, 1:], -1)

    # Test that odf array matches and is right shape
    pam = peaks_from_model(model, data, _sphere, .5, 45, return_odf=True)
    expected_shape = (len(data), len(_odf))
    assert_equal(pam.odf.shape, expected_shape)
    assert_((_odf == pam.odf).all())
    assert_array_equal(pam.peak_values[:, 0], _odf.max())

    # Test mask
    mask = (np.arange(10) % 2) == 1

    pam = peaks_from_model(model,
                           data,
                           _sphere,
                           .5,
                           45,
                           mask=mask,
                           normalize_peaks=True)
    assert_array_equal(pam.gfa[~mask], 0)
    assert_array_equal(pam.qa[~mask], 0)
    assert_array_equal(pam.peak_values[~mask], 0)
    assert_array_equal(pam.peak_indices[~mask], -1)

    assert_array_equal(pam.gfa[mask], gfa(_odf))
    assert_array_equal(pam.peak_values[mask, 0], 1.)
    assert_array_equal(pam.peak_values[mask, 1:], 0.)
    mn, mx = _odf.min(), _odf.max()
    assert_array_equal(pam.qa[mask, 0], (mx - mn) / mx)
    assert_array_equal(pam.qa[mask, 1:], 0.)
    assert_array_equal(pam.peak_indices[mask, 0], odf_argmax)
    assert_array_equal(pam.peak_indices[mask, 1:], -1)
示例#6
0
def test_peaks_shm_coeff():

    SNR = 100
    S0 = 100

    _, fbvals, fbvecs = get_data('small_64D')

    from dipy.data import get_sphere

    sphere = get_sphere('symmetric724')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))

    data, _ = multi_tensor(gtab, mevals, S0, angles=[(0, 0), (60, 0)],
                           fractions=[50, 50], snr=SNR)

    from dipy.reconst.shm import CsaOdfModel

    model = CsaOdfModel(gtab, 4)

    pam = peaks_from_model(model, data[None, :], sphere, .5, 45,
                           return_odf=True, return_sh=True)
    # Test that spherical harmonic coefficients return back correctly
    odf2 = np.dot(pam.shm_coeff, pam.B)
    assert_array_almost_equal(pam.odf, odf2)
    assert_equal(pam.shm_coeff.shape[-1], 45)

    pam = peaks_from_model(model, data[None, :], sphere, .5, 45,
                           return_odf=True, return_sh=False)
    assert_equal(pam.shm_coeff, None)

    pam = peaks_from_model(model, data[None, :], sphere, .5, 45,
                           return_odf=True, return_sh=True,
                           sh_basis_type='mrtrix')

    odf2 = np.dot(pam.shm_coeff, pam.B)
    assert_array_almost_equal(pam.odf, odf2)
示例#7
0
def test_peaksFromModel():
    data = np.zeros((10, 2))

    # Test basic case
    model = SimpleOdfModel(_gtab)
    odf_argmax = _odf.argmax()
    pam = peaks_from_model(model, data, _sphere, .5, 45, normalize_peaks=True)

    assert_array_equal(pam.gfa, gfa(_odf))
    assert_array_equal(pam.peak_values[:, 0], 1.)
    assert_array_equal(pam.peak_values[:, 1:], 0.)
    mn, mx = _odf.min(), _odf.max()
    assert_array_equal(pam.qa[:, 0], (mx - mn) / mx)
    assert_array_equal(pam.qa[:, 1:], 0.)
    assert_array_equal(pam.peak_indices[:, 0], odf_argmax)
    assert_array_equal(pam.peak_indices[:, 1:], -1)

    # Test that odf array matches and is right shape
    pam = peaks_from_model(model, data, _sphere, .5, 45, return_odf=True)
    expected_shape = (len(data), len(_odf))
    assert_equal(pam.odf.shape, expected_shape)
    assert_true((_odf == pam.odf).all())
    assert_array_equal(pam.peak_values[:, 0], _odf.max())

    # Test mask
    mask = (np.arange(10) % 2) == 1

    pam = peaks_from_model(model, data, _sphere, .5, 45, mask=mask,
                           normalize_peaks=True)
    assert_array_equal(pam.gfa[~mask], 0)
    assert_array_equal(pam.qa[~mask], 0)
    assert_array_equal(pam.peak_values[~mask], 0)
    assert_array_equal(pam.peak_indices[~mask], -1)

    assert_array_equal(pam.gfa[mask], gfa(_odf))
    assert_array_equal(pam.peak_values[mask, 0], 1.)
    assert_array_equal(pam.peak_values[mask, 1:], 0.)
    mn, mx = _odf.min(), _odf.max()
    assert_array_equal(pam.qa[mask, 0], (mx - mn) / mx)
    assert_array_equal(pam.qa[mask, 1:], 0.)
    assert_array_equal(pam.peak_indices[mask, 0], odf_argmax)
    assert_array_equal(pam.peak_indices[mask, 1:], -1)
示例#8
0
def tracking_eudx4csd(dir_src, dir_out, verbose=False):

    # Load data
    fbval = pjoin(dir_src, 'bvals_' + par_b_tag)
    fbvec = pjoin(dir_src, 'bvecs_' + par_b_tag)
    fdwi = pjoin(dir_src, 'data_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')
    #fmask = pjoin(dir_src, 'nodif_brain_mask_' + par_dim_tag + '.nii.gz')
    fmask = pjoin(dir_src,
                  'wm_mask_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')

    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=par_b0_threshold)
    data, affine = load_nifti(fdwi, verbose)
    mask, _ = load_nifti(fmask, verbose)

    sphere = get_sphere('symmetric724')

    response, ratio = auto_response(gtab,
                                    data,
                                    roi_radius=par_ar_radius,
                                    fa_thr=par_ar_fa_th)
    # print('Response function', response)

    # Model fitting
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    csd_peaks = peaks_from_model(csd_model,
                                 data,
                                 sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=False)

    # Computation of streamlines
    streamlines = EuDX(csd_peaks.peak_values,
                       csd_peaks.peak_indices,
                       seeds=par_eudx_seeds,
                       odf_vertices=sphere.vertices,
                       a_low=par_eudx_threshold)

    # Saving tractography
    voxel_size = (par_dim_vox, ) * 3
    dims = mask.shape[:3]
    hdr = nib.trackvis.empty_header()
    hdr['voxel_size'] = voxel_size
    hdr['voxel_order'] = 'LAS'
    hdr['dim'] = dims
    hdr['vox_to_ras'] = affine
    strm = ((sl, None, None) for sl in streamlines)
    trk_name = 'tractogram_' + par_b_tag + '_' + par_dim_tag + '_' + par_csd_tag + '_' + par_eudx_tag + '.trk'
    trk_out = os.path.join(dir_out, trk_name)
    nib.trackvis.write(trk_out, strm, hdr, points_space='voxel')
def tracking_eudx4csd(dir_src, dir_out, verbose=False):

    # Load data
    fbval = pjoin(dir_src, 'bvals_' + par_b_tag)
    fbvec = pjoin(dir_src, 'bvecs_' + par_b_tag)
    fdwi =  pjoin(dir_src, 'data_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')
    #fmask = pjoin(dir_src, 'nodif_brain_mask_' + par_dim_tag + '.nii.gz')
    fmask = pjoin(dir_src, 'wm_mask_' + par_b_tag + '_' + par_dim_tag + '.nii.gz')

    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=par_b0_threshold)
    data, affine = load_nifti(fdwi, verbose)
    mask, _ = load_nifti(fmask, verbose)

    sphere = get_sphere('symmetric724') 

    response, ratio = auto_response(gtab, data, roi_radius=par_ar_radius, 
                                    fa_thr=par_ar_fa_th)
    # print('Response function', response)

    # Model fitting
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    csd_peaks = peaks_from_model(csd_model, 
                                 data, 
                                 sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=False)

    # Computation of streamlines
    streamlines = EuDX(csd_peaks.peak_values,
                       csd_peaks.peak_indices, 
                       seeds=par_eudx_seeds,
                       odf_vertices= sphere.vertices,
                       a_low=par_eudx_threshold)

    # Saving tractography
    voxel_size =  (par_dim_vox,) * 3
    dims = mask.shape[:3]
    hdr = nib.trackvis.empty_header()
    hdr['voxel_size'] = voxel_size
    hdr['voxel_order'] = 'LAS'
    hdr['dim'] = dims
    hdr['vox_to_ras'] = affine
    strm = ((sl, None, None) for sl in streamlines)
    trk_name = 'tractogram_' + par_b_tag + '_' + par_dim_tag + '_' + par_csd_tag + '_' + par_eudx_tag + '.trk'
    trk_out = os.path.join(dir_out, trk_name)
    nib.trackvis.write(trk_out, strm, hdr, points_space='voxel')    
示例#10
0
def peaks_from_nifti(fdwi, fbvec=None, fbval=None, mask=None):

    if '.' not in fdwi:
        fbase = fdwi
        fdwi = fdwi+".nii.gz"
        if not fbval:
            fbval = fbase+".bval"
        if not fbvec:
            fbvec = fbase+".bvec"
    print fdwi
    img = nib.load(fdwi)
    data = img.get_data()
    zooms = img.get_header().get_zooms()[:3]
    affine = img.get_affine()
    bval, bvec = dio.read_bvals_bvecs(fbval, fbvec)
    gtab = dgrad.gradient_table(bval, bvec)


    if not mask:
        print 'generate mask'
        maskdata, mask = median_otsu(data, 3, 1, False, vol_idx=range(10, 50), dilate=2)

    else:
        mask_img = nib.load(mask)
        mask = mask_img.get_data()

        from dipy.segment.mask import applymask
        maskdata = applymask(data, mask)

    print maskdata.shape, mask.shape


    from dipy.reconst.shm import QballModel, CsaOdfModel
    model = QballModel(gtab, 6)

    sphere = get_sphere('symmetric724')

    print "fit Qball peaks"
    proc_num = multiprocessing.cpu_count()-1
    print "peaks_from_model using core# =" + str(proc_num)

    peaks = peaks_from_model(model=model, data=maskdata, relative_peak_threshold=.5,
                            min_separation_angle=25,
        sphere=sphere, mask=mask, parallel=True, nbr_processes=proc_num)

    return peaks
from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel,
                                   auto_response)

response, ratio = auto_response(gtab, data)
response = list(response)

peaks_sphere = get_sphere('symmetric362')

model = ConstrainedSphericalDeconvModel(gtab, response,
                                        sh_order=sh_order)

peaks_csd = peaks_from_model(model=model,
                             data=data,
                             sphere=peaks_sphere,
                             relative_peak_threshold=.5,
                             min_separation_angle=25,
                             mask=mask_vol,
                             return_sh=True,
                             sh_order=sh_order,
                             normalize_peaks=True,
                             parallel=False)
peaks_csd.affine = affine

fpeaks = dname + 'peaks.npz'

save_peaks(fpeaks, peaks_csd)

from dipy.io.trackvis import save_trk
from dipy.tracking import utils
from dipy.tracking.local import (ThresholdTissueClassifier,
                                 LocalTracking)
	print '\tCreating Mask'
	data_masked, mask = median_otsu(data, 2, 1)

	'''
	We've loaded an image called `atlas` which is a map of tissue types such
	that every integer value in the array `labels` represents an anatomical
	structure or tissue type [#]_.  We'll use `peaks_from_model` to apply the 
	`CsaOdfModel` to each white matter voxel and estimate fiber orientations which 
	we can use for tracking.
	'''

	print '\tCalculating peaks'
	csamodel = shm.CsaOdfModel(gtab, 6)
	csapeaks = peaks.peaks_from_model(model=csamodel,
	                                  data=data,
	                                  sphere=peaks.default_sphere,
	                                  relative_peak_threshold=.5,
	                                  min_separation_angle=25,
	                                  mask=mask)

	'''
	Brief interlude to make sure we don't seed from low-FA voxels.
	'''

	print '\tTensor Fitting'
	tensor_model = TensorModel(gtab, fit_method='WLS')
	tensor_fit = tensor_model.fit(data, mask)

	FA = fractional_anisotropy(tensor_fit.evals)
	stopping_values = np.zeros(csapeaks.peak_values.shape)
	stopping_values[:] = FA[..., None]
示例#13
0
文件: reconst.py 项目: MarcCote/dipy
    def run(self, input_files, bvalues, bvectors, mask_files,
            b0_threshold=0.0,
            bvecs_tol=0.01,
            roi_center=None,
            roi_radius=10,
            fa_thr=0.7,
            frf=None, extract_pam_values=False,
            sh_order=8,
            odf_to_sh_order=8,
            out_dir='',
            out_pam='peaks.pam5', out_shm='shm.nii.gz',
            out_peaks_dir='peaks_dirs.nii.gz',
            out_peaks_values='peaks_values.nii.gz',
            out_peaks_indices='peaks_indices.nii.gz', out_gfa='gfa.nii.gz'):
        """ Constrained spherical deconvolution

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions
        bvecs_tol : float, optional
            Bvecs should be unit vectors. (default:0.01)
        roi_center : variable int, optional
            Center of ROI in data. If center is None, it is assumed that it is
            the center of the volume with shape `data.shape[:3]` (default None)
        roi_radius : int, optional
            radius of cubic ROI in voxels (default 10)
        fa_thr : float, optional
            FA threshold for calculating the response function (default 0.7)
        frf : variable float, optional
            Fiber response function can be for example inputed as 15 4 4
            (from the command line) or [15, 4, 4] from a Python script to be
            converted to float and mutiplied by 10**-4 . If None
            the fiber response function will be computed automatically
            (default: None).
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        sh_order : int, optional
            Spherical harmonics order (default 6) used in the CSA fit.
        odf_to_sh_order : int, optional
            Spherical harmonics order used for peak_from_model to compress
            the ODF to spherical harmonics coefficients (default 8)
        out_dir : string, optional
            Output directory (default input file directory)
        out_pam : string, optional
            Name of the peaks volume to be saved (default 'peaks.pam5')
        out_shm : string, optional
            Name of the shperical harmonics volume to be saved
            (default 'shm.nii.gz')
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved
            (default 'peaks_dirs.nii.gz')
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved
            (default 'peaks_values.nii.gz')
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved
            (default 'peaks_indices.nii.gz')
        out_gfa : string, optional
            Name of the generalise fa volume to be saved (default 'gfa.nii.gz')


        References
        ----------
        .. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of
           the fibre orientation distribution in diffusion MRI: Non-negativity
           constrained super-resolved spherical deconvolution.
        """
        io_it = self.get_io_iterator()

        for (dwi, bval, bvec, maskfile, opam, oshm, opeaks_dir, opeaks_values,
             opeaks_indices, ogfa) in io_it:

            logging.info('Loading {0}'.format(dwi))
            img = nib.load(dwi)
            data = img.get_data()
            affine = img.affine

            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            gtab = gradient_table(bvals, bvecs, b0_threshold=b0_threshold,
                                  atol=bvecs_tol)
            mask_vol = nib.load(maskfile).get_data().astype(np.bool)

            sh_order = 8
            if data.shape[-1] < 15:
                raise ValueError(
                    'You need at least 15 unique DWI volumes to '
                    'compute fiber odfs. You currently have: {0}'
                    ' DWI volumes.'.format(data.shape[-1]))
            elif data.shape[-1] < 30:
                sh_order = 6

            if frf is None:
                logging.info('Computing response function')
                if roi_center is not None:
                    logging.info('Response ROI center:\n{0}'
                                 .format(roi_center))
                    logging.info('Response ROI radius:\n{0}'
                                 .format(roi_radius))
                response, ratio, nvox = auto_response(
                        gtab, data,
                        roi_center=roi_center,
                        roi_radius=roi_radius,
                        fa_thr=fa_thr,
                        return_number_of_voxels=True)
                response = list(response)

            else:
                logging.info('Using response function')
                if isinstance(frf, str):
                    l01 = np.array(literal_eval(frf), dtype=np.float64)
                else:
                    l01 = np.array(frf, dtype=np.float64)

                l01 *= 10 ** -4
                response = np.array([l01[0], l01[1], l01[1]])
                ratio = l01[1] / l01[0]
                response = (response, ratio)

            logging.info(
                'Eigenvalues for the frf of the input data are :{0}'
                    .format(response[0]))
            logging.info('Ratio for smallest to largest eigen value is {0}'
                         .format(ratio))

            peaks_sphere = get_sphere('repulsion724')

            logging.info('CSD computation started.')
            csd_model = ConstrainedSphericalDeconvModel(gtab, response,
                                                        sh_order=sh_order)

            peaks_csd = peaks_from_model(model=csd_model,
                                         data=data,
                                         sphere=peaks_sphere,
                                         relative_peak_threshold=.5,
                                         min_separation_angle=25,
                                         mask=mask_vol,
                                         return_sh=True,
                                         sh_order=sh_order,
                                         normalize_peaks=True,
                                         parallel=False)
            peaks_csd.affine = affine

            save_peaks(opam, peaks_csd)

            logging.info('CSD computation completed.')

            if extract_pam_values:
                peaks_to_niftis(peaks_csd, oshm, opeaks_dir, opeaks_values,
                                opeaks_indices, ogfa, reshape_dirs=True)

            dname_ = os.path.dirname(opam)
            if dname_ == '':
                logging.info('Pam5 file saved in current directory')
            else:
                logging.info(
                        'Pam5 file saved in {0}'.format(dname_))

            return io_it
def dmri_recon(sid,
               data_dir,
               out_dir,
               resolution,
               recon='csd',
               dirs='',
               num_threads=2):
    import tempfile
    #tempfile.tempdir = '/om/scratch/Fri/ksitek/'

    import os
    oldval = None
    if 'MKL_NUM_THREADS' in os.environ:
        oldval = os.environ['MKL_NUM_THREADS']
    os.environ['MKL_NUM_THREADS'] = '%d' % num_threads
    ompoldval = None
    if 'OMP_NUM_THREADS' in os.environ:
        ompoldval = os.environ['OMP_NUM_THREADS']
    os.environ['OMP_NUM_THREADS'] = '%d' % num_threads
    import nibabel as nib
    import numpy as np
    from glob import glob

    if resolution == '0.2mm':
        filename = 'Reg_S64550_nii4d.nii'
        #filename = 'angular_resample/dwi_%s.nii.gz'%dirs
        fimg = os.path.abspath(glob(os.path.join(data_dir, filename))[0])
    else:
        filename = 'Reg_S64550_nii4d_resamp-%s.nii.gz' % (resolution)
        fimg = os.path.abspath(
            glob(os.path.join(data_dir, 'resample', filename))[0])
    print("dwi file = %s" % fimg)
    fbval = os.path.abspath(
        glob(os.path.join(data_dir, 'bvecs', 'camino_120_RAS.bvals'))[0])
    print("bval file = %s" % fbval)
    fbvec = os.path.abspath(
        glob(os.path.join(data_dir, 'bvecs',
                          'camino_120_RAS_flipped-xy.bvecs'))[0])
    #                                          'angular_resample',
    #                                          'dwi_%s.bvecs'%dirs))[0])
    print("bvec file = %s" % fbvec)
    img = nib.load(fimg)
    data = img.get_fdata()

    affine = img.get_affine()

    prefix = sid

    from dipy.io import read_bvals_bvecs
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    '''
    from dipy.core.gradients import vector_norm
    b0idx = []
    for idx, val in enumerate(bvals):
        if val < 1:
            pass
            #bvecs[idx] = [1, 0, 0]
        else:
            b0idx.append(idx)
            #print "b0idx=%d"%idx
    #print "input bvecs:"
    #print bvecs
    bvecs[b0idx, :] = bvecs[b0idx, :]/vector_norm(bvecs[b0idx])[:, None]
    #print "bvecs after normalization:"
    #print bvecs
    '''

    from dipy.core.gradients import gradient_table
    gtab = gradient_table(bvals, bvecs)
    gtab.bvecs.shape == bvecs.shape
    gtab.bvecs
    gtab.bvals.shape == bvals.shape
    gtab.bvals

    #from dipy.segment.mask import median_otsu
    #b0_mask, mask = median_otsu(data[:, :, :, b0idx].mean(axis=3).squeeze(), 4, 4)

    if resolution == '0.2mm':
        mask_name = 'Reg_S64550_nii_b0-slice_mask.nii.gz'
        fmask1 = os.path.join(data_dir, mask_name)
    else:
        mask_name = 'Reg_S64550_nii_b0-slice_mask_resamp-%s.nii.gz' % (
            resolution)
        fmask1 = os.path.join(data_dir, 'resample', mask_name)
    print("fmask file = %s" % fmask1)
    mask = nib.load(fmask1).get_fdata()
    ''' DTI model & save metrics '''
    from dipy.reconst.dti import TensorModel
    print("running tensor model")
    tenmodel = TensorModel(gtab)
    tenfit = tenmodel.fit(data, mask)

    from dipy.reconst.dti import fractional_anisotropy
    print("running FA")
    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
    fa_img = nib.Nifti1Image(FA, img.get_affine())
    tensor_fa_file = os.path.abspath('%s_tensor_fa.nii.gz' % (prefix))
    nib.save(fa_img, tensor_fa_file)

    from dipy.reconst.dti import axial_diffusivity
    print("running AD")
    AD = axial_diffusivity(tenfit.evals)
    AD[np.isnan(AD)] = 0
    ad_img = nib.Nifti1Image(AD, img.get_affine())
    tensor_ad_file = os.path.abspath('%s_tensor_ad.nii.gz' % (prefix))
    nib.save(ad_img, tensor_ad_file)

    from dipy.reconst.dti import radial_diffusivity
    print("running RD")
    RD = radial_diffusivity(tenfit.evals)
    RD[np.isnan(RD)] = 0
    rd_img = nib.Nifti1Image(RD, img.get_affine())
    tensor_rd_file = os.path.abspath('%s_tensor_rd.nii.gz' % (prefix))
    nib.save(rd_img, tensor_rd_file)

    from dipy.reconst.dti import mean_diffusivity
    print("running MD")
    MD = mean_diffusivity(tenfit.evals)
    MD[np.isnan(MD)] = 0
    md_img = nib.Nifti1Image(MD, img.get_affine())
    tensor_md_file = os.path.abspath('%s_tensor_md.nii.gz' % (prefix))
    nib.save(md_img, tensor_md_file)

    evecs = tenfit.evecs
    evec_img = nib.Nifti1Image(evecs, img.get_affine())
    tensor_evec_file = os.path.abspath('%s_tensor_evec.nii.gz' % (prefix))
    nib.save(evec_img, tensor_evec_file)
    ''' ODF model '''
    useFA = True
    print("creating %s model" % recon)
    if recon == 'csd':
        from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
        from dipy.reconst.csdeconv import auto_response
        response, ratio = auto_response(gtab, data, roi_radius=10,
                                        fa_thr=0.5)  # 0.7

        model = ConstrainedSphericalDeconvModel(gtab, response)
        useFA = True
        return_sh = True
    elif recon == 'csa':
        from dipy.reconst.shm import CsaOdfModel, normalize_data
        model = CsaOdfModel(gtab, sh_order=8)
        useFA = True
        return_sh = True
    elif recon == 'gqi':
        from dipy.reconst.gqi import GeneralizedQSamplingModel
        model = GeneralizedQSamplingModel(gtab)
        return_sh = False
    else:
        raise ValueError('only csd, csa supported currently')
        from dipy.reconst.dsi import (DiffusionSpectrumDeconvModel,
                                      DiffusionSpectrumModel)
        model = DiffusionSpectrumDeconvModel(gtab)
    '''reconstruct ODFs'''
    from dipy.data import get_sphere
    sphere = get_sphere('symmetric724')
    #odfs = fit.odf(sphere)

    # with CSD/GQI, uses > 50GB per core; don't get greedy with cores!
    from dipy.reconst.peaks import peaks_from_model
    print("running peaks_from_model")
    peaks = peaks_from_model(
        model=model,
        data=data,
        sphere=sphere,
        mask=mask,
        return_sh=return_sh,
        return_odf=False,
        normalize_peaks=True,
        npeaks=5,
        relative_peak_threshold=.5,
        min_separation_angle=10,  #25,
        parallel=num_threads > 1,
        nbr_processes=num_threads)

    # save the peaks
    from dipy.io.peaks import save_peaks
    peaks_file = os.path.abspath('%s_peaks.pam5' % (prefix))
    save_peaks(peaks_file, peaks)

    # save the spherical harmonics
    shm_coeff_file = os.path.abspath('%s_shm_coeff.nii.gz' % (prefix))
    if return_sh:
        shm_coeff = peaks.shm_coeff
        nib.save(nib.Nifti1Image(shm_coeff, img.get_affine()), shm_coeff_file)
    else:
        # if it's not a spherical model, output it as an essentially null file
        np.savetxt(shm_coeff_file, [0])

    # save the generalized fractional anisotropy image
    gfa_img = nib.Nifti1Image(peaks.gfa, img.get_affine())
    model_gfa_file = os.path.abspath('%s_%s_gfa.nii.gz' % (prefix, recon))
    nib.save(gfa_img, model_gfa_file)

    #from dipy.reconst.dti import quantize_evecs
    #peak_indices = quantize_evecs(tenfit.evecs, sphere.vertices)
    #eu = EuDX(FA, peak_indices, odf_vertices = sphere.vertices,
    #a_low=0.2, seeds=10**6, ang_thr=35)
    ''' probabilistic tracking '''
    '''
    from dipy.direction import ProbabilisticDirectionGetter
    from dipy.tracking.local import LocalTracking
    from dipy.tracking.streamline import Streamlines
    from dipy.io.streamline import save_trk

    prob_dg = ProbabilisticDirectionGetter.from_shcoeff(shm_coeff,
                                                        max_angle=45.,
                                                        sphere=sphere)
    streamlines_generator = LocalTracking(prob_dg,
                                          affine,
                                          step_size=.5,
                                          max_cross=1)

    # Generate streamlines object
    streamlines = Streamlines(streamlines_generator)

    affine = img.get_affine()
    vox_size=fa_img.get_header().get_zooms()[:3]

    fname = os.path.abspath('%s_%s_prob_streamline.trk' % (prefix, recon))
    save_trk(fname, streamlines, affine, vox_size=vox_size)
    '''
    ''' deterministic tracking with EuDX method'''
    from dipy.tracking.eudx import EuDX
    print("reconstructing with EuDX")
    if useFA:
        eu = EuDX(
            FA,
            peaks.peak_indices[..., 0],
            odf_vertices=sphere.vertices,
            a_low=0.001,  # default is 0.0239
            seeds=10**6,
            ang_thr=75)
    else:
        eu = EuDX(
            peaks.gfa,
            peaks.peak_indices[..., 0],
            odf_vertices=sphere.vertices,
            #a_low=0.1,
            seeds=10**6,
            ang_thr=45)

    sl_fname = os.path.abspath('%s_%s_det_streamline.trk' % (prefix, recon))

    # trying new dipy.io.streamline module, per email to neuroimaging list
    # 2018.04.05
    from nibabel.streamlines import Field
    from nibabel.orientations import aff2axcodes
    affine = img.get_affine()
    vox_size = fa_img.get_header().get_zooms()[:3]
    fov_shape = FA.shape[:3]

    if vox_size is not None and fov_shape is not None:
        hdr = {}
        hdr[Field.VOXEL_TO_RASMM] = affine.copy()
        hdr[Field.VOXEL_SIZES] = vox_size
        hdr[Field.DIMENSIONS] = fov_shape
        hdr[Field.VOXEL_ORDER] = "".join(aff2axcodes(affine))

    tractogram = nib.streamlines.Tractogram(eu)
    tractogram.affine_to_rasmm = affine
    trk_file = nib.streamlines.TrkFile(tractogram, header=hdr)
    nib.streamlines.save(trk_file, sl_fname)

    if oldval:
        os.environ['MKL_NUM_THREADS'] = oldval
    else:
        del os.environ['MKL_NUM_THREADS']
    if ompoldval:
        os.environ['OMP_NUM_THREADS'] = ompoldval
    else:
        del os.environ['OMP_NUM_THREADS']

    print('all output files created')

    return (tensor_fa_file, tensor_evec_file, model_gfa_file, sl_fname, affine,
            tensor_ad_file, tensor_rd_file, tensor_md_file, shm_coeff_file,
            peaks_file)
示例#15
0
sf_model = sfm.SparseFascicleModel(gtab,
                                   sphere=sphere,
                                   l1_ratio=0.5,
                                   alpha=0.001,
                                   response=response[0])
"""
We fit this model to the data in each voxel in the white-matter mask, so that
we can use these directions in tracking:
"""

from dipy.reconst.peaks import peaks_from_model

pnm = peaks_from_model(sf_model,
                       data,
                       sphere,
                       relative_peak_threshold=.5,
                       min_separation_angle=25,
                       mask=white_matter,
                       parallel=True)
"""
A ThresholdTissueClassifier object is used to segment the data to track only
through areas in which the Generalized Fractional Anisotropy (GFA) is
sufficiently high.
"""

from dipy.tracking.local import ThresholdTissueClassifier
classifier = ThresholdTissueClassifier(pnm.gfa, .25)
"""
Tracking will be started from a set of seeds evenly distributed in the white
matter:
"""
示例#16
0
sf_odf = sf_fit.odf(sphere)

fodf_spheres = fvtk.sphere_funcs(sf_odf, sphere, scale=1.3, norm=True)

ren = fvtk.ren()
fvtk.add(ren, fodf_spheres)

print('Saving illustration as sf_odfs.png')
fvtk.record(ren, out_path='sf_odfs.png', size=(1000, 1000))
"""
We can extract the peaks from the ODF, and plot these as well
"""

sf_peaks = dpp.peaks_from_model(sf_model,
                                data_small,
                                sphere,
                                relative_peak_threshold=.5,
                                min_separation_angle=25,
                                return_sh=False)

fvtk.clear(ren)
fodf_peaks = fvtk.peaks(sf_peaks.peak_dirs, sf_peaks.peak_values, scale=1.3)
fvtk.add(ren, fodf_peaks)

print('Saving illustration as sf_peaks.png')
fvtk.record(ren, out_path='sf_peaks.png', size=(1000, 1000))
"""
Finally, we plot both the peaks and the ODFs, overlayed:
"""

fodf_spheres.GetProperty().SetOpacity(0.4)
fvtk.add(ren, fodf_spheres)
示例#17
0
    def run(self,
            input_files,
            bvalues_files,
            bvectors_files,
            mask_files,
            sh_order=6,
            odf_to_sh_order=8,
            b0_threshold=0.0,
            bvecs_tol=0.01,
            extract_pam_values=False,
            out_dir='',
            out_pam='peaks.pam5',
            out_shm='shm.nii.gz',
            out_peaks_dir='peaks_dirs.nii.gz',
            out_peaks_values='peaks_values.nii.gz',
            out_peaks_indices='peaks_indices.nii.gz',
            out_gfa='gfa.nii.gz'):
        """ Constant Solid Angle.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        sh_order : int, optional
            Spherical harmonics order (default 6) used in the CSA fit.
        odf_to_sh_order : int, optional
            Spherical harmonics order used for peak_from_model to compress
            the ODF to spherical harmonics coefficients (default 8)
        b0_threshold : float, optional
            Threshold used to find b=0 directions
        bvecs_tol : float, optional
            Threshold used so that norm(bvec)=1 (default 0.01)
        extract_pam_values : bool, optional
            Wheter or not to save pam volumes as single nifti files.
        out_dir : string, optional
            Output directory (default input file directory)
        out_pam : string, optional
            Name of the peaks volume to be saved (default 'peaks.pam5')
        out_shm : string, optional
            Name of the shperical harmonics volume to be saved
            (default 'shm.nii.gz')
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved
            (default 'peaks_dirs.nii.gz')
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved
            (default 'peaks_values.nii.gz')
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved
            (default 'peaks_indices.nii.gz')
        out_gfa : string, optional
            Name of the generalise fa volume to be saved (default 'gfa.nii.gz')


        References
        ----------
        .. [1] Aganj, I., et al. 2009. ODF Reconstruction in Q-Ball Imaging
           with Solid Angle Consideration.
        """
        io_it = self.get_io_iterator()

        for (dwi, bval, bvec, maskfile, opam, oshm, opeaks_dir, opeaks_values,
             opeaks_indices, ogfa) in io_it:

            logging.info('Loading {0}'.format(dwi))
            vol = nib.load(dwi)
            data = vol.get_data()
            affine = vol.affine

            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            if b0_threshold < bvals.min():
                warn("b0_threshold (value: {0}) is too low, increase your "
                     "b0_threshold. It should higher than the first b0 value "
                     "({1}).".format(b0_threshold, bvals.min()))
            gtab = gradient_table(bvals,
                                  bvecs,
                                  b0_threshold=b0_threshold,
                                  atol=bvecs_tol)
            mask_vol = nib.load(maskfile).get_data().astype(np.bool)

            peaks_sphere = get_sphere('repulsion724')

            logging.info('Starting CSA computations {0}'.format(dwi))

            csa_model = CsaOdfModel(gtab, sh_order)

            peaks_csa = peaks_from_model(model=csa_model,
                                         data=data,
                                         sphere=peaks_sphere,
                                         relative_peak_threshold=.5,
                                         min_separation_angle=25,
                                         mask=mask_vol,
                                         return_sh=True,
                                         sh_order=odf_to_sh_order,
                                         normalize_peaks=True,
                                         parallel=False)
            peaks_csa.affine = affine

            save_peaks(opam, peaks_csa)

            logging.info('Finished CSA {0}'.format(dwi))

            if extract_pam_values:
                peaks_to_niftis(peaks_csa,
                                oshm,
                                opeaks_dir,
                                opeaks_values,
                                opeaks_indices,
                                ogfa,
                                reshape_dirs=True)

            dname_ = os.path.dirname(opam)
            if dname_ == '':
                logging.info('Pam5 file saved in current directory')
            else:
                logging.info('Pam5 file saved in {0}'.format(dname_))

            return io_it
示例#18
0
def deterministic(diffusion_file, bvecs_file, bvals_file, outdir,
                  mask_file=None, order=4, nb_seeds_per_voxel=1, step=0.5,
                  fmt="%.4f"):
    """ Compute a deterministic tractography using an ODF model.

    Parameters
    ----------
    diffusion_file: str (mandatory)
        a file containing the preprocessed diffusion data.
    bvecs_file: str (mandatory)
        a file containing the diffusion gradient directions.
    bvals_file: str (mandatory)
        a file containing the diffusion b-values.
    outdir: str (mandatory)
        the output directory.
    mask_file: str (optional, default None)
        an image used to mask the diffusion data during the tractography. If
        not set, all the image voxels are considered.
    order: int (optional, default 4)
        the order of the ODF model.
    nb_seeds_per_voxel: int (optional, default 1)
        the number of seeds per voxel used during the propagation.
    step: float (optional, default 0.5)
        the integration step in voxel fraction used during the propagation.
    fmt: str (optional, default '%.4f')
        the saved track elements format.

    Returns
    -------
    track_file: str
        a determinist model of the white matter organization.
    """
    # Read diffusion sequence
    bvals, bvecs = read_bvals_bvecs(bvals_file, bvecs_file)
    gtab = gradient_table(bvals, bvecs)
    diffusion_array = nibabel.load(diffusion_file).get_data()
    if mask_file is not None:
        mask_array = nibabel.load(mask_file).get_data()
    else:
        mask_array = numpy.ones(diffusion_array.shape[:3], dtype=numpy.uint8)

    # Estimate ODF model
    csamodel = shm.CsaOdfModel(gtab, order)
    csapeaks = peaks.peaks_from_model(
        model=csamodel, data=diffusion_array, sphere=peaks.default_sphere,
        relative_peak_threshold=.8, min_separation_angle=45,
        mask=mask_array)

    # Compute deterministic tractography in voxel space so affine is equal
    # to identity
    seeds = utils.seeds_from_mask(mask_array, density=nb_seeds_per_voxel)
    streamline_generator = EuDX(
        csapeaks.peak_values, csapeaks.peak_indices,
        odf_vertices=peaks.default_sphere.vertices, a_low=.05, step_sz=step,
        seeds=seeds)
    affine = streamline_generator.affine
    streamlines = list(streamline_generator)

    # Save the tracks
    track_file = os.path.join(outdir, "fibers.txt")
    savetxt(track_file, streamlines, fmt=fmt)

    return track_file
示例#19
0
    # Loading values, vectors, image and mask
    sphere = get_sphere('symmetric362')
    print "loading bval/bvec files"
    bvals, bvecs = read_bvals_bvecs("tp3_data//bvals2000", "tp3_data//bvecs2000")
    gtab = gradient_table(bvals, bvecs)

    print "loading nifti files"
    img = nib.load("tp3_data//dwi2000.nii.gz")
    affine = img.get_affine()
    data = img.get_data()
    mask = nib.load("tp3_data//_binary_mask.nii.gz").get_data()

    ## Apply mask
    data_in_wm = applymask(data, mask)
    response, ratio = auto_response(gtab, data_in_wm)

    # Computing ODF
    print "computing fODF... please wait an hour"
    csd_model = ConstrainedSphericalDeconvModel(gtab, response, reg_sphere=sphere)
    peaks_csd = peaks_from_model(model=csd_model,
                                 data=data,
                                 sphere=sphere,
                                 relative_peak_threshold=.25,
                                 min_separation_angle=25,
                                 mask=mask,
                                 normalize_peaks=True,
                                 parallel=True)
    # Saving files
    print "saving files"
    nib.save(nib.Nifti1Image(peaks_csd.shm_coeff.astype(np.float32), affine), "tp3_data//_fodf.nii.gz")
    nib.save(nib.Nifti1Image(reshape_peaks_for_visualization(peaks_csd), affine), "tp3_data//_fodfpeaks.nii.gz")
示例#20
0
文件: csdeconv.py 项目: oesteban/dipy
def recursive_response(gtab,
                       data,
                       mask=None,
                       sh_order=8,
                       peak_thr=0.01,
                       init_fa=0.08,
                       init_trace=0.0021,
                       iter=8,
                       convergence=0.001,
                       parallel=True,
                       nbr_processes=None,
                       sphere=default_sphere):
    """ Recursive calibration of response function using peak threshold

    Parameters
    ----------
    gtab : GradientTable
    data : ndarray
        diffusion data
    mask : ndarray, optional
        mask for recursive calibration, for example a white matter mask. It has
        shape `data.shape[0:3]` and dtype=bool. Default: use the entire data
        array. 
    sh_order : int, optional
        maximal spherical harmonics order. Default: 8
    peak_thr : float, optional
        peak threshold, how large the second peak can be relative to the first
        peak in order to call it a single fiber population [1]. Default: 0.01
    init_fa : float, optional
        FA of the initial 'fat' response function (tensor). Default: 0.08
    init_trace : float, optional
        trace of the initial 'fat' response function (tensor). Default: 0.0021
    iter : int, optional
        maximum number of iterations for calibration. Default: 8.
    convergence : float, optional
        convergence criterion, maximum relative change of SH
        coefficients. Default: 0.001.
    parallel : bool, optional
        Whether to use parallelization in peak-finding during the calibration
        procedure. Default: True
    nbr_processes: int
        If `parallel` is True, the number of subprocesses to use
        (default multiprocessing.cpu_count()).
    sphere : Sphere, optional.
        The sphere used for peak finding. Default: default_sphere.
    
    Returns
    -------
    response : ndarray
        response function in SH coefficients

    Notes
    -----
    In CSD there is an important pre-processing step: the estimation of the
    fiber response function. Using an FA threshold is not a very robust method.
    It is dependent on the dataset (non-informed used subjectivity), and still
    depends on the diffusion tensor (FA and first eigenvector),
    which has low accuracy at high b-value. This function recursively
    calibrates the response function, for more information see [1].

    References
    ----------
    .. [1] Tax, C.M.W., et al. NeuroImage 2014. Recursive calibration of
           the fiber response function for spherical deconvolution of
           diffusion MRI data.
    """
    S0 = 1
    evals = fa_trace_to_lambdas(init_fa, init_trace)
    res_obj = (evals, S0)

    if mask is None:
        data = data.reshape(-1, data.shape[-1])
    else:
        data = data[mask]

    n = np.arange(0, sh_order + 1, 2)
    where_dwi = lazy_index(~gtab.b0s_mask)
    response_p = np.ones(len(n))

    for num_it in range(1, iter):
        r_sh_all = np.zeros(len(n))
        csd_model = ConstrainedSphericalDeconvModel(gtab,
                                                    res_obj,
                                                    sh_order=sh_order)

        csd_peaks = peaks_from_model(model=csd_model,
                                     data=data,
                                     sphere=sphere,
                                     relative_peak_threshold=peak_thr,
                                     min_separation_angle=25,
                                     parallel=parallel,
                                     nbr_processes=nbr_processes)

        dirs = csd_peaks.peak_dirs
        vals = csd_peaks.peak_values
        single_peak_mask = (vals[:, 1] / vals[:, 0]) < peak_thr
        data = data[single_peak_mask]
        dirs = dirs[single_peak_mask]

        for num_vox in range(0, data.shape[0]):
            rotmat = vec2vec_rotmat(dirs[num_vox, 0], np.array([0, 0, 1]))

            rot_gradients = np.dot(rotmat, gtab.gradients.T).T

            x, y, z = rot_gradients[where_dwi].T
            r, theta, phi = cart2sphere(x, y, z)
            # for the gradient sphere
            B_dwi = real_sph_harm(0, n, theta[:, None], phi[:, None])
            r_sh_all += np.linalg.lstsq(B_dwi, data[num_vox, where_dwi])[0]

        response = r_sh_all / data.shape[0]
        res_obj = AxSymShResponse(data[:, gtab.b0s_mask].mean(), response)

        change = abs((response_p - response) / response_p)
        if all(change < convergence):
            break

        response_p = response

    return res_obj
示例#21
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()
    logging.basicConfig(level=logging.INFO)

    if not args.not_all:
        args.fodf = args.fodf or 'fodf.nii.gz'
        args.peaks = args.peaks or 'peaks.nii.gz'
        args.peak_indices = args.peak_indices or 'peak_indices.nii.gz'

    arglist = [args.fodf, args.peaks, args.peak_indices]
    if args.not_all and not any(arglist):
        parser.error('When using --not_all, you need to specify at least '
                     'one file to output.')

    assert_inputs_exist(parser, [args.input, args.bvals, args.bvecs])
    assert_outputs_exists(parser, args, arglist)

    nbr_processes = args.nbr_processes
    parallel = True
    if nbr_processes <= 0:
        nbr_processes = None
    elif nbr_processes == 1:
        parallel = False

    # Check for FRF filename
    base_odf_name, _ = split_name_with_nii(args.fodf)
    frf_filename = base_odf_name + '_frf.txt'
    if os.path.isfile(frf_filename) and not args.overwrite:
        parser.error('Cannot save frf file, "{0}" already exists. '
                     'Use -f to overwrite.'.format(frf_filename))

    vol = nib.load(args.input)
    data = vol.get_data()

    bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs)

    if args.mask_wm is not None:
        wm_mask = nib.load(args.mask_wm).get_data().astype('bool')
    else:
        wm_mask = np.ones_like(data[..., 0], dtype=np.bool)
        logging.info(
            'No white matter mask specified! mask_data will be used instead, '
            'if it has been supplied. \nBe *VERY* careful about the '
            'estimation of the fiber response function for the CSD.')

    data_in_wm = applymask(data, wm_mask)

    if not is_normalized_bvecs(bvecs):
        logging.warning('Your b-vectors do not seem normalized...')
        bvecs = normalize_bvecs(bvecs)

    if bvals.min() != 0:
        if bvals.min() > 20:
            raise ValueError(
                'The minimal bvalue is greater than 20. This is highly '
                'suspicious. Please check your data to ensure everything is '
                'correct.\nValue found: {}'.format(bvals.min()))
        else:
            logging.warning(
                'Warning: no b=0 image. Setting b0_threshold to '
                'bvals.min() = %s', bvals.min())
            gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())
    else:
        gtab = gradient_table(bvals, bvecs)

    if args.mask is None:
        mask = None
    else:
        mask = nib.load(args.mask).get_data().astype(np.bool)

    # Raise warning for sh order if there is not enough DWIs
    if data.shape[-1] < (args.sh_order + 1) * (args.sh_order + 2) / 2:
        warnings.warn(
            'We recommend having at least %s unique DWIs volumes, but you '
            'currently have %s volumes. Try lowering the parameter --sh_order '
            'in case of non convergence.',
            (args.sh_order + 1) * (args.sh_order + 2) / 2), data.shape[-1]
    fa_thresh = args.fa_thresh

    # If threshold is too high, try lower until enough indices are found
    # estimating a response function with fa < 0.5 does not make sense
    nvox = 0
    while nvox < 300 and fa_thresh > 0.5:
        response, ratio, nvox = auto_response(gtab,
                                              data_in_wm,
                                              roi_center=args.roi_center,
                                              roi_radius=args.roi_radius,
                                              fa_thr=fa_thresh,
                                              return_number_of_voxels=True)

        logging.info('Number of indices is %s with threshold of %s', nvox,
                     fa_thresh)
        fa_thresh -= 0.05

        if fa_thresh <= 0:
            raise ValueError(
                'Could not find at least 300 voxels for estimating the frf!')

    logging.info('Found %s valid voxels for frf estimation.', nvox)

    response = list(response)
    logging.info('Response function is %s', response)

    if args.frf is not None:
        l01 = np.array(literal_eval(args.frf), dtype=np.float64)
        if not args.no_factor:
            l01 *= 10**-4

        response[0] = np.array([l01[0], l01[1], l01[1]])
        ratio = l01[1] / l01[0]

    logging.info("Eigenvalues for the frf of the input data are: %s",
                 response[0])
    logging.info("Ratio for smallest to largest eigen value is %s", ratio)
    np.savetxt(frf_filename, response[0])

    if not args.frf_only:
        reg_sphere = get_sphere('symmetric362')
        peaks_sphere = get_sphere('symmetric724')

        csd_model = ConstrainedSphericalDeconvModel(gtab,
                                                    response,
                                                    reg_sphere=reg_sphere,
                                                    sh_order=args.sh_order)

        peaks_csd = peaks_from_model(model=csd_model,
                                     data=data,
                                     sphere=peaks_sphere,
                                     relative_peak_threshold=.5,
                                     min_separation_angle=25,
                                     mask=mask,
                                     return_sh=True,
                                     sh_basis_type=args.basis,
                                     sh_order=args.sh_order,
                                     normalize_peaks=True,
                                     parallel=parallel,
                                     nbr_processes=nbr_processes)

        if args.fodf:
            nib.save(
                nib.Nifti1Image(peaks_csd.shm_coeff.astype(np.float32),
                                vol.affine), args.fodf)

        if args.peaks:
            nib.save(
                nib.Nifti1Image(reshape_peaks_for_visualization(peaks_csd),
                                vol.affine), args.peaks)

        if args.peak_indices:
            nib.save(nib.Nifti1Image(peaks_csd.peak_indices, vol.affine),
                     args.peak_indices)
sphere, like ``default_sphere`` which has 362 directions on the hemisphere,
without having to worry about memory limitations.
"""

from dipy.data import default_sphere

prob_dg = ProbabilisticDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
                                                    max_angle=30.,
                                                    sphere=default_sphere)
streamlines = LocalTracking(prob_dg, classifier, seeds, affine, step_size=.5)

save_trk("probabilistic_shm_coeff.trk", streamlines, affine, labels.shape)

"""
Not all model fits have the ``shm_coeff`` attribute because not all models use
this basis to represent the data internally. However we can fit the ODF of any
model to the spherical harmonic basis using the ``peaks_from_model`` function.
"""

from dipy.reconst.peaks import peaks_from_model

peaks = peaks_from_model(csd_model, data, default_sphere, .5, 25,
                         mask=white_matter, return_sh=True, parallel=True)
fod_coeff = peaks.shm_coeff
prob_dg = ProbabilisticDirectionGetter.from_shcoeff(fod_coeff, max_angle=30.,
                                                    sphere=default_sphere)
streamlines = LocalTracking(prob_dg, classifier, seeds, affine, step_size=.5)
save_trk("probabilistic_peaks_from_model.trk", streamlines, affine,
         labels.shape)

示例#23
0
文件: dipy_csd.py 项目: sitek/exvivo
def dmri_recon(sid, data_dir, out_dir, resolution, recon='csd', num_threads=2):
    import tempfile
    #tempfile.tempdir = '/om/scratch/Fri/ksitek/'

    import os
    oldval = None
    if 'MKL_NUM_THREADS' in os.environ:
        oldval = os.environ['MKL_NUM_THREADS']
    os.environ['MKL_NUM_THREADS'] = '%d' % num_threads
    ompoldval = None
    if 'OMP_NUM_THREADS' in os.environ:
        ompoldval = os.environ['OMP_NUM_THREADS']
    os.environ['OMP_NUM_THREADS'] = '%d' % num_threads
    import nibabel as nib
    import numpy as np
    from glob import glob

    if resolution == '0.2mm':
        filename = 'Reg_S64550_nii4d.nii'
        fimg = os.path.abspath(glob(os.path.join(data_dir, filename))[0])
    else:
        filename = 'Reg_S64550_nii4d_resamp-%s.nii.gz'%(resolution)
        fimg = os.path.abspath(glob(os.path.join(data_dir, 'resample', filename))[0])
    print("dwi file = %s"%fimg)
    fbvec = os.path.abspath(glob(os.path.join(data_dir, 'bvecs',
                                              'camino_120_RAS_flipped-xy.bvecs'))[0])
    print("bvec file = %s"%fbvec)
    fbval = os.path.abspath(glob(os.path.join(data_dir, 'bvecs',
                                              'camino_120_RAS.bvals'))[0])
    print("bval file = %s"%fbval)
    img = nib.load(fimg)
    data = img.get_data()

    affine = img.get_affine()

    prefix = sid

    from dipy.io import read_bvals_bvecs
    from dipy.core.gradients import vector_norm
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)

    b0idx = []
    for idx, val in enumerate(bvals):
        if val < 1:
            pass
            #bvecs[idx] = [1, 0, 0]
        else:
            b0idx.append(idx)
            #print "b0idx=%d"%idx
    #print "input bvecs:"
    #print bvecs
    bvecs[b0idx, :] = bvecs[b0idx, :]/vector_norm(bvecs[b0idx])[:, None]
    #print "bvecs after normalization:"
    #print bvecs


    from dipy.core.gradients import gradient_table
    gtab = gradient_table(bvals, bvecs)
    gtab.bvecs.shape == bvecs.shape
    gtab.bvecs
    gtab.bvals.shape == bvals.shape
    gtab.bvals


    from dipy.reconst.csdeconv import auto_response
    response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.1) # 0.7

    #from dipy.segment.mask import median_otsu
    #b0_mask, mask = median_otsu(data[:, :, :, b0idx].mean(axis=3).squeeze(), 4, 4)

    if resolution == '0.2mm':
        mask_name = 'Reg_S64550_nii_b0-slice_mask.nii.gz'
        fmask1 = os.path.join(data_dir, mask_name)
    else:
        mask_name = 'Reg_S64550_nii_b0-slice_mask_resamp-%s.nii.gz'%(resolution)
        fmask1 = os.path.join(data_dir, 'resample', mask_name)
    print("fmask file = %s"%fmask1)
    mask = nib.load(fmask1).get_data()

    useFA = True
    print("creating model")
    if recon == 'csd':
        from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
        model = ConstrainedSphericalDeconvModel(gtab, response)
        useFA = True
    elif recon == 'csa':
        from dipy.reconst.shm import CsaOdfModel, normalize_data
        model = CsaOdfModel(gtab, 4)
        useFA = False
    else:
        raise ValueError('only csd, csa supported currently')
        from dipy.reconst.dsi import (DiffusionSpectrumDeconvModel,
                                      DiffusionSpectrumModel)
        model = DiffusionSpectrumDeconvModel(gtab)
    fit = model.fit(data)

    from dipy.data import get_sphere
    sphere = get_sphere('symmetric724')
    #odfs = fit.odf(sphere)

    from dipy.reconst.peaks import peaks_from_model
    print("running peaks_from_model")
    peaks = peaks_from_model(model=model,
                             data=data,
                             sphere=sphere,
                             mask=mask,
                             return_sh=True,
                             return_odf=False,
                             normalize_peaks=True,
                             npeaks=5,
                             relative_peak_threshold=.5,
                             min_separation_angle=25,
                             parallel=num_threads > 1,
                             nbr_processes=num_threads)

    from dipy.reconst.dti import TensorModel
    print("running tensor model")
    tenmodel = TensorModel(gtab)
    tenfit = tenmodel.fit(data, mask)

    from dipy.reconst.dti import fractional_anisotropy
    print("running FA")
    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
    fa_img = nib.Nifti1Image(FA, img.get_affine())
    tensor_fa_file = os.path.abspath('%s_tensor_fa.nii.gz' % (prefix))
    nib.save(fa_img, tensor_fa_file)

    from dipy.reconst.dti import axial_diffusivity
    print("running AD")
    AD = axial_diffusivity(tenfit.evals)
    AD[np.isnan(AD)] = 0
    ad_img = nib.Nifti1Image(AD, img.get_affine())
    tensor_ad_file = os.path.abspath('%s_tensor_ad.nii.gz' % (prefix))
    nib.save(ad_img, tensor_ad_file)

    from dipy.reconst.dti import radial_diffusivity
    print("running RD")
    RD = radial_diffusivity(tenfit.evals)
    RD[np.isnan(RD)] = 0
    rd_img = nib.Nifti1Image(RD, img.get_affine())
    tensor_rd_file = os.path.abspath('%s_tensor_rd.nii.gz' % (prefix))
    nib.save(rd_img, tensor_rd_file)

    from dipy.reconst.dti import mean_diffusivity
    print("running MD")
    MD = mean_diffusivity(tenfit.evals)
    MD[np.isnan(MD)] = 0
    md_img = nib.Nifti1Image(MD, img.get_affine())
    tensor_md_file = os.path.abspath('%s_tensor_md.nii.gz' % (prefix))
    nib.save(md_img, tensor_md_file)

    evecs = tenfit.evecs
    evec_img = nib.Nifti1Image(evecs, img.get_affine())
    tensor_evec_file = os.path.abspath('%s_tensor_evec.nii.gz' % (prefix))
    nib.save(evec_img, tensor_evec_file)

    shm_coeff = fit.shm_coeff
    shm_coeff_file = os.path.abspath('%s_shm_coeff.nii.gz' % (prefix))
    nib.save(nib.Nifti1Image(shm_coeff, img.get_affine()), shm_coeff_file)

    #from dipy.reconst.dti import quantize_evecs
    #peak_indices = quantize_evecs(tenfit.evecs, sphere.vertices)
    #eu = EuDX(FA, peak_indices, odf_vertices = sphere.vertices,
               #a_low=0.2, seeds=10**6, ang_thr=35)

    fa_img = nib.Nifti1Image(peaks.gfa, img.get_affine())
    model_gfa_file = os.path.abspath('%s_%s_gfa.nii.gz' % (prefix, recon))
    nib.save(fa_img, model_gfa_file)

    from dipy.tracking.eudx import EuDX
    print("reconstructing with EuDX")
    if useFA:
        eu = EuDX(FA, peaks.peak_indices[..., 0],
                  odf_vertices = sphere.vertices,
                  #a_low=0.1,
                  seeds=10**6,
                  ang_thr=45)
    else:
        eu = EuDX(peaks.gfa, peaks.peak_indices[..., 0],
                  odf_vertices = sphere.vertices,
                  #a_low=0.1,
                  seeds=10**6,
                  ang_thr=45)

    sl_fname = os.path.abspath('%s_%s_streamline.trk' % (prefix, recon))
    """
    #import dipy.tracking.metrics as dmetrics
    streamlines = ((sl, None, None) for sl in eu) # if dmetrics.length(sl) > 15)

    hdr = nib.trackvis.empty_header()
    hdr['voxel_size'] = fa_img.get_header().get_zooms()[:3]
    hdr['voxel_order'] = 'RAS' #LAS
    hdr['dim'] = FA.shape[:3]

    nib.trackvis.write(sl_fname, streamlines, hdr, points_space='voxel')
    """
    # trying new dipy.io.streamline module, per email to neuroimaging list
    # 2018.04.05
    from nibabel.streamlines import Field
    from nibabel.orientations import aff2axcodes
    affine = img.get_affine()
    vox_size=fa_img.get_header().get_zooms()[:3]
    fov_shape=FA.shape[:3]

    if vox_size is not None and fov_shape is not None:
        hdr = {}
        hdr[Field.VOXEL_TO_RASMM] = affine.copy()
        hdr[Field.VOXEL_SIZES] = vox_size
        hdr[Field.DIMENSIONS] = fov_shape
        hdr[Field.VOXEL_ORDER] = "".join(aff2axcodes(affine))

    tractogram = nib.streamlines.Tractogram(eu)
    tractogram.affine_to_rasmm = affine
    trk_file = nib.streamlines.TrkFile(tractogram, header=hdr)
    nib.streamlines.save(trk_file, sl_fname)

    if oldval:
        os.environ['MKL_NUM_THREADS'] = oldval
    else:
        del os.environ['MKL_NUM_THREADS']
    if ompoldval:
        os.environ['OMP_NUM_THREADS'] = ompoldval
    else:
        del os.environ['OMP_NUM_THREADS']

    assert tensor_fa_file
    assert tensor_evec_file
    assert model_gfa_file
    assert tensor_ad_file
    assert tensor_rd_file
    assert tensor_md_file
    assert shm_coeff_file
    print('all output files created')

    return tensor_fa_file, tensor_evec_file, model_gfa_file, sl_fname, affine, tensor_ad_file, tensor_rd_file, tensor_md_file, shm_coeff_file
def track(dname, fdwi, fbval, fbvec, fmask=None, seed_density = 1, show=False):
    
    data, affine = load_nifti(fdwi)
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=50)
    
    if fmask is None: 
        from dipy.segment.mask import median_otsu
        b0_mask, mask = median_otsu(data)  # TODO: check parameters to improve the mask
    else: 
        mask, mask_affine = load_nifti(fmask)
        mask = np.squeeze(mask) #fix mask dimensions 
        
    # compute DTI model
    from dipy.reconst.dti import TensorModel
    tenmodel = TensorModel(gtab)#, fit_method='OLS') #, min_signal=5000)
    
    # fit the dti model
    tenfit = tenmodel.fit(data, mask=mask)
    
    # save fa
    ffa = dname + 'tensor_fa.nii.gz'

    fa_img = nib.Nifti1Image(tenfit.fa.astype(np.float32), affine)
    nib.save(fa_img, ffa)
    
    sh_order = 8 #TODO: check what that does
    if data.shape[-1] < 15:
        raise ValueError('You need at least 15 unique DWI volumes to '
                         'compute fiber ODFs. You currently have: {0}'
                         ' DWI volumes.'.format(data.shape[-1]))
    elif data.shape[-1] < 30:
        sh_order = 6
        
    # compute the response equation ?
    from dipy.reconst.csdeconv import auto_response
    response, ratio = auto_response(gtab, data)
    response = list(response)
    
    peaks_sphere = get_sphere('symmetric362')

    #TODO: check what that does
    peaks_csd = peaks_from_model(model=tenmodel,
                                 data=data,
                                 sphere=peaks_sphere,
                                 relative_peak_threshold=.5, #.5
                                 min_separation_angle=25,
                                 mask=mask,
                                 return_sh=True,
                                 sh_order=sh_order,
                                 normalize_peaks=True,
                                 parallel=False)
    
    peaks_csd.affine = affine
    fpeaks = dname + 'peaks.npz'
    save_peaks(fpeaks, peaks_csd)
    
    from dipy.io.trackvis import save_trk
    from dipy.tracking import utils
    from dipy.tracking.local import (ThresholdTissueClassifier,
                                     LocalTracking)

    stopping_thr = 0.25   #0.25

    pam = load_peaks(fpeaks)

    #ffa = dname + 'tensor_fa_nomask.nii.gz'
    fa, fa_affine = load_nifti(ffa)

    classifier = ThresholdTissueClassifier(fa,
                                           stopping_thr)
    
    # seeds 
    

    seed_mask = fa > 0.4 #0.4 #TODO: check this parameter

    seeds = utils.seeds_from_mask(
        seed_mask,
        density=seed_density,
        affine=affine)
    
    # tractography, if affine then in world coordinates
    streamlines = LocalTracking(pam, classifier,
                                seeds, affine=affine, step_size=.5)

    # Compute streamlines and store as a list.
    streamlines = list(streamlines)

    ftractogram = dname + 'tractogram.trk'

    #save .trk
    save_trk_old_style(ftractogram, streamlines, affine, fa.shape)

    if show:
        #render
        show_results(data,streamlines, fa, fa_affine)
示例#25
0
fbvec = "original.bvec"

bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
gtab = gradient_table(bvals, bvecs)
ten_model = TensorModel(gtab)
ten_fit = ten_model.fit(data, mask)

fa = fractional_anisotropy(ten_fit.evals)
cfa = color_fa(fa, ten_fit.evecs)
csamodel = CsaOdfModel(gtab, 6)
sphere = get_sphere('symmetric724')

pmd = peaks_from_model(model=csamodel,
                       data=data,
                       sphere=sphere,
                       relative_peak_threshold=.5,
                       min_separation_angle=25,
                       mask=mask,
                       return_odf=False)
#Deterministic tractography
eu = EuDX(a=fa,
          ind=pmd.peak_indices[..., 0],
          seeds=2000000,
          odf_vertices=sphere.vertices,
          a_low=0.2)
affine = eu.affine
csd_streamlines = list(eu)

#Remove tracts shorter than 30mm
#print np.shape(csd_streamlines)
from dipy.tracking.utils import length
示例#26
0
def recursive_response(gtab, data, mask=None, sh_order=8, peak_thr=0.01,
                       init_fa=0.08, init_trace=0.0021, iter=8,
                       convergence=0.001, parallel=True, nbr_processes=None,
                       sphere=default_sphere):
    """ Recursive calibration of response function using peak threshold

    Parameters
    ----------
    gtab : GradientTable
    data : ndarray
        diffusion data
    mask : ndarray, optional
        mask for recursive calibration, for example a white matter mask. It has
        shape `data.shape[0:3]` and dtype=bool. Default: use the entire data
        array. 
    sh_order : int, optional
        maximal spherical harmonics order. Default: 8
    peak_thr : float, optional
        peak threshold, how large the second peak can be relative to the first
        peak in order to call it a single fiber population [1]. Default: 0.01
    init_fa : float, optional
        FA of the initial 'fat' response function (tensor). Default: 0.08
    init_trace : float, optional
        trace of the initial 'fat' response function (tensor). Default: 0.0021
    iter : int, optional
        maximum number of iterations for calibration. Default: 8.
    convergence : float, optional
        convergence criterion, maximum relative change of SH
        coefficients. Default: 0.001.
    parallel : bool, optional
        Whether to use parallelization in peak-finding during the calibration
        procedure. Default: True
    nbr_processes: int
        If `parallel` is True, the number of subprocesses to use
        (default multiprocessing.cpu_count()).
    sphere : Sphere, optional.
        The sphere used for peak finding. Default: default_sphere.
    
    Returns
    -------
    response : ndarray
        response function in SH coefficients

    Notes
    -----
    In CSD there is an important pre-processing step: the estimation of the
    fiber response function. Using an FA threshold is not a very robust method.
    It is dependent on the dataset (non-informed used subjectivity), and still
    depends on the diffusion tensor (FA and first eigenvector),
    which has low accuracy at high b-value. This function recursively
    calibrates the response function, for more information see [1].

    References
    ----------
    .. [1] Tax, C.M.W., et al. NeuroImage 2014. Recursive calibration of
           the fiber response function for spherical deconvolution of
           diffusion MRI data.
    """
    S0 = 1
    evals = fa_trace_to_lambdas(init_fa, init_trace)
    res_obj = (evals, S0)

    if mask is None:
        data = data.reshape(-1, data.shape[-1])
    else:
        data = data[mask]

    n = np.arange(0, sh_order + 1, 2)
    where_dwi = lazy_index(~gtab.b0s_mask)
    response_p = np.ones(len(n))

    for num_it in range(1, iter):
        r_sh_all = np.zeros(len(n))
        csd_model = ConstrainedSphericalDeconvModel(gtab, res_obj,
                                                    sh_order=sh_order)

        csd_peaks = peaks_from_model(model=csd_model,
                                     data=data,
                                     sphere=sphere,
                                     relative_peak_threshold=peak_thr,
                                     min_separation_angle=25,
                                     parallel=parallel,
                                     nbr_processes=nbr_processes)

        dirs = csd_peaks.peak_dirs
        vals = csd_peaks.peak_values
        single_peak_mask = (vals[:, 1] / vals[:, 0]) < peak_thr
        data = data[single_peak_mask]
        dirs = dirs[single_peak_mask]

        for num_vox in range(0, data.shape[0]):
            rotmat = vec2vec_rotmat(dirs[num_vox, 0], np.array([0, 0, 1]))

            rot_gradients = np.dot(rotmat, gtab.gradients.T).T

            x, y, z = rot_gradients[where_dwi].T
            r, theta, phi = cart2sphere(x, y, z)
            # for the gradient sphere
            B_dwi = real_sph_harm(0, n, theta[:, None], phi[:, None])
            r_sh_all += np.linalg.lstsq(B_dwi, data[num_vox, where_dwi])[0]

        response = r_sh_all / data.shape[0]
        res_obj = AxSymShResponse(data[:, gtab.b0s_mask].mean(), response)

        change = abs((response_p - response) / response_p)
        if all(change < convergence):
            break

        response_p = response

    return res_obj
parcellation_data = parcellation_data * mask_data_bin
parcellation_wm_data = parcellation_data * wm_data_bin
parcellation_wm_data = parcellation_wm_data.astype(np.int)


#=============================================================================
# Track all of white matter using EuDX
#=============================================================================

if not os.path.exists(Msym_file) and not os.path.exists(Mdir_file):

    print '\tCalculating peaks'
    csamodel = shm.CsaOdfModel(gtab, 6)
    csapeaks = peaks.peaks_from_model(model=csamodel,
                                      data=dwi_data,
                                      sphere=peaks.default_sphere,
                                      relative_peak_threshold=.8,
                                      min_separation_angle=45,
                                      mask=wm_data_bin)
                                      
    print '\tTracking'
    seeds = utils.seeds_from_mask(parcellation_wm_data, density=2)
    condition_seeds = condition_seeds(seeds, np.eye(4), csapeaks.peak_values.shape[:3])
    streamline_generator = EuDX(csapeaks.peak_values, csapeaks.peak_indices,
                                odf_vertices=peaks.default_sphere.vertices,
                                a_low=.05, step_sz=.5, seeds=condition_seeds)
    affine = streamline_generator.affine
    streamlines = list(streamline_generator)
    
else:
    print '\tTracking already complete'
                              relative_peak_threshold=.5,
                              min_separation_angle=25,
                              parallel=False)
 
 GFA = csd_peaks.gfa
 """
 sphere = get_sphere('symmetric724')
 csamodel = CsaOdfModel(gtab, 4)
 
 
 #csafit = csamodel.fit(data_small)
 
 csapeaks = peaks_from_model(model=csamodel,
                         data=maskdata,
                         sphere=sphere,
                         relative_peak_threshold=.5,
                         min_separation_angle=25,
                         mask=mask,
                         return_odf=False,
                         normalize_peaks=True)
 
 GFA = csapeaks.gfa
 GFA_img = nib.Nifti1Image(GFA.astype(np.float32), affine)
 print GFA.shape
 nib.save(GFA_img, os.getcwd()+'/zhibiao/'+f_name+'_GFA.nii.gz')
 print('Saving "GFA.nii.gz" sucessful.')
 
 
 from dipy.reconst.shore import ShoreModel
 asm = ShoreModel(gtab)
 print('Calculating...SHORE msd')
 asmfit = asm.fit(data,mask)
示例#29
0
def deterministic(diffusion_file,
                  bvecs_file,
                  bvals_file,
                  trackfile,
                  mask_file=None,
                  order=4,
                  nb_seeds_per_voxel=1,
                  step=0.5):
    """ Compute a deterministic tractography using an ODF model.

    Parameters
    ----------
    diffusion_file: str (mandatory)
        a file containing the preprocessed diffusion data.
    bvecs_file: str (mandatory)
        a file containing the diffusion gradient directions.
    bvals_file: str (mandatory)
        a file containing the diffusion b-values.
    trackfile: str (mandatory)
        a file path where the fibers will be saved in trackvis format.
    mask_file: str (optional, default None)
        an image used to mask the diffusion data during the tractography. If
        not set, all the image voxels are considered.
    order: int (optional, default 4)
        the order of the ODF model.
    nb_seeds_per_voxel: int (optional, default 1)
        the number of seeds per voxel used during the propagation.
    step: float (optional, default 0.5)
        the integration step in voxel fraction used during the propagation.

    Returns
    -------
    streamlines: tuple of 3-uplet
        the computed fiber tracks in trackvis format (points: ndarray shape
        (N,3) where N is the number of points, scalars: None or ndarray shape
        (N, M) where M is the number of scalars per point, properties: None or
        ndarray shape (P,) where P is the number of properties).
    hdr: structured array
        structured array with trackvis header fields (voxel size, voxel order,
        dim).
    """
    # Read diffusion sequence
    bvals, bvecs = read_bvals_bvecs(bvals_file, bvecs_file)
    gtab = gradient_table(bvals, bvecs)
    diffusion_image = nibabel.load(diffusion_file)
    diffusion_array = diffusion_image.get_data()
    if mask_file is not None:
        mask_array = nibabel.load(mask_file).get_data()
    else:
        mask_array = numpy.ones(diffusion_array.shape[:3], dtype=numpy.uint8)

    # Estimate ODF model
    csamodel = shm.CsaOdfModel(gtab, order)
    csapeaks = peaks.peaks_from_model(model=csamodel,
                                      data=diffusion_array,
                                      sphere=peaks.default_sphere,
                                      relative_peak_threshold=.8,
                                      min_separation_angle=45,
                                      mask=mask_array)

    # Compute deterministic tractography in voxel space so affine is equal
    # to identity
    seeds = utils.seeds_from_mask(mask_array, density=nb_seeds_per_voxel)
    streamline_generator = EuDX(csapeaks.peak_values,
                                csapeaks.peak_indices,
                                odf_vertices=peaks.default_sphere.vertices,
                                a_low=.05,
                                step_sz=step,
                                seeds=seeds)
    #  affine = streamline_generator.affine

    # Save the tracks in trackvis format
    hdr = nibabel.trackvis.empty_header()
    hdr["voxel_size"] = diffusion_image.get_header().get_zooms()[:3]
    hdr["voxel_order"] = "LAS"
    hdr["dim"] = diffusion_array.shape[:3]
    streamlines = [track for track in streamline_generator]
    random.shuffle(streamlines)
    streamlines = ((track, None, None) for track in streamlines)
    nibabel.trackvis.write(trackfile, streamlines, hdr, points_space="voxel")

    return streamlines, hdr
def dodata(f_name,data_path):
    dipy_home = pjoin(os.path.expanduser('~'), 'dipy_data')
    folder = pjoin(dipy_home, data_path)
    fraw = pjoin(folder, f_name+'.nii.gz')
    fbval = pjoin(folder, f_name+'.bval')
    fbvec = pjoin(folder, f_name+'.bvec')
    flabels = pjoin(folder, f_name+'.nii-label.nii.gz')
    
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs)
    
    img = nib.load(fraw)
    data = img.get_data()
    affine = img.get_affine()
    
    label_img = nib.load(flabels)
    labels=label_img.get_data()
    lap=through_label_sl.label_position(labels, labelValue=1)    
    dataslice = data[40:80, 20:80, lap[2][2] / 2]
    #print lap[2][2]/2
    
    #get_csd_gfa(f_name,data,gtab,dataslice)
    
    maskdata, mask = median_otsu(data, 2, 1, False, vol_idx=range(10, 50), dilate=2) #不去背景
    
    """ get fa and tensor evecs and ODF"""
    from dipy.reconst.dti import TensorModel,mean_diffusivity
    tenmodel = TensorModel(gtab)
    tenfit = tenmodel.fit(data, mask)
    
    sphere = get_sphere('symmetric724')
    
    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0
      
    np.save(os.getcwd()+'\zhibiao'+f_name+'_FA.npy',FA)
    fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
    nib.save(fa_img,os.getcwd()+'\zhibiao'+f_name+'_FA.nii.gz')
    print('Saving "DTI_tensor_fa.nii.gz" sucessful.')
    evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), affine)
    nib.save(evecs_img, os.getcwd()+'\zhibiao'+f_name+'_DTI_tensor_evecs.nii.gz')
    print('Saving "DTI_tensor_evecs.nii.gz" sucessful.')
    MD1 = mean_diffusivity(tenfit.evals)
    nib.save(nib.Nifti1Image(MD1.astype(np.float32), img.get_affine()), os.getcwd()+'\zhibiao'+f_name+'_MD.nii.gz')
    
    
    #tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere)
    #from dipy.reconst.odf import gfa
    #dti_gfa=gfa(tensor_odfs)
    
    wm_mask = (np.logical_or(FA >= 0.4, (np.logical_and(FA >= 0.15, MD >= 0.0011))))

    response = recursive_response(gtab, data, mask=wm_mask, sh_order=8,
                                  peak_thr=0.01, init_fa=0.08,
                                  init_trace=0.0021, iter=8, convergence=0.001,
                                  parallel=False)
    from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    
    #csd_fit = csd_model.fit(data)

    from dipy.direction import peaks_from_model

    csd_peaks = peaks_from_model(model=csd_model,
                                 data=data,
                                 sphere=sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=False)
    
    GFA = csd_peaks.gfa
    
    nib.save(GFA, os.getcwd()+'\zhibiao'+f_name+'_MSD.nii.gz')
    print('Saving "GFA.nii.gz" sucessful.')
    
    from dipy.reconst.shore import ShoreModel
    asm = ShoreModel(gtab)
    print('Calculating...SHORE msd')
    asmfit = asm.fit(data,mask)
    msd = asmfit.msd()
    msd[np.isnan(msd)] = 0
    
    #print GFA[:,:,slice].T
    print('Saving msd_img.png')
    nib.save(msd, os.getcwd()+'\zhibiao'+f_name+'_GFA.nii.gz')
示例#31
0
def main():
    parser = _build_arg_parser()
    args = parser.parse_args()

    if not args.not_all:
        args.gfa = args.gfa or 'gfa.nii.gz'
        args.peaks = args.peaks or 'peaks.nii.gz'
        args.peak_indices = args.peak_indices or 'peaks_indices.nii.gz'
        args.sh = args.sh or 'sh.nii.gz'
        args.nufo = args.nufo or 'nufo.nii.gz'
        args.a_power = args.a_power or 'anisotropic_power.nii.gz'

    arglist = [
        args.gfa, args.peaks, args.peak_indices, args.sh, args.nufo,
        args.a_power
    ]
    if args.not_all and not any(arglist):
        parser.error('When using --not_all, you need to specify at least ' +
                     'one file to output.')

    assert_inputs_exist(parser, [args.input, args.bvals, args.bvecs])
    assert_outputs_exists(parser, args, arglist)

    nbr_processes = args.nbr_processes
    parallel = True
    if nbr_processes <= 0:
        nbr_processes = None
    elif nbr_processes == 1:
        parallel = False

    # Load data
    img = nib.load(args.input)
    data = img.get_data()
    affine = img.get_affine()

    bvals, bvecs = read_bvals_bvecs(args.bvals, args.bvecs)

    if not is_normalized_bvecs(bvecs):
        logging.warning('Your b-vectors do not seem normalized...')
        bvecs = normalize_bvecs(bvecs)

    if bvals.min() != 0:
        if bvals.min() > 20:
            raise ValueError(
                'The minimal bvalue is greater than 20. This is highly '
                'suspicious. Please check your data to ensure everything is '
                'correct.\nValue found: {0}'.format(bvals.min()))
        else:
            logging.warning(
                'Warning: no b=0 image. Setting b0_threshold to '
                'bvals.min() = %s', bvals.min())
            gtab = gradient_table(bvals, bvecs, b0_threshold=bvals.min())
    else:
        gtab = gradient_table(bvals, bvecs)

    sphere = get_sphere('symmetric724')

    if args.mask is None:
        mask = None
    else:
        mask = nib.load(args.mask).get_data().astype(np.bool)

    if args.use_qball:
        model = QballModel(gtab, sh_order=int(args.sh_order), smooth=0.006)
    else:
        model = CsaOdfModel(gtab, sh_order=int(args.sh_order), smooth=0.006)

    odfpeaks = peaks_from_model(model=model,
                                data=data,
                                sphere=sphere,
                                relative_peak_threshold=.5,
                                min_separation_angle=25,
                                mask=mask,
                                return_odf=False,
                                normalize_peaks=True,
                                return_sh=True,
                                sh_order=int(args.sh_order),
                                sh_basis_type=args.basis,
                                npeaks=5,
                                parallel=parallel,
                                nbr_processes=nbr_processes)

    if args.gfa:
        nib.save(nib.Nifti1Image(odfpeaks.gfa.astype(np.float32), affine),
                 args.gfa)

    if args.peaks:
        nib.save(
            nib.Nifti1Image(reshape_peaks_for_visualization(odfpeaks), affine),
            args.peaks)

    if args.peak_indices:
        nib.save(nib.Nifti1Image(odfpeaks.peak_indices, affine),
                 args.peak_indices)

    if args.sh:
        nib.save(
            nib.Nifti1Image(odfpeaks.shm_coeff.astype(np.float32), affine),
            args.sh)

    if args.nufo:
        peaks_count = (odfpeaks.peak_indices > -1).sum(3)
        nib.save(nib.Nifti1Image(peaks_count.astype(np.int32), affine),
                 args.nufo)

    if args.a_power:
        odf_a_power = anisotropic_power(odfpeaks.shm_coeff)
        nib.save(nib.Nifti1Image(odf_a_power.astype(np.float32), affine),
                 args.a_power)
示例#32
0
"""
.. figure:: csd_odfs.png
   :align: center

   **CSD ODFs**.

In Dipy we also provide tools for finding the peak directions (maxima) of the
ODFs. For this purpose we strongly recommend using ``peaks_from_model``.
"""

from dipy.reconst.peaks import peaks_from_model

csd_peaks = peaks_from_model(model=csd_model,
                             data=data_small,
                             sphere=sphere,
                             relative_peak_threshold=.5,
                             min_separation_angle=25,
                             parallel=False)

fvtk.clear(ren)

fodf_peaks = fvtk.peaks(csd_peaks.peak_dirs, csd_peaks.peak_values, scale=1.3)

fvtk.add(ren, fodf_peaks)

print('Saving illustration as csd_peaks.png')
fvtk.record(ren, out_path='csd_peaks.png', size=(600, 600))

"""
.. figure:: csd_peaks.png
   :align: center
    # # white matter mask
    # logic1 = np.logical_and(labels_>117, labels_<148)
    # logic2 = np.logical_and(labels_>283, labels_<314)
    # logic = np.logical_or(logic1, logic2)
    # logic_ = np.logical_or(labels_==150, labels_==316)
    # wm = np.where(logic, True, np.where(logic_, True, False))

    print 'fitting CSA model'
    st2 = time.time()
    csamodel = shm.CsaOdfModel(gtab, 6)
    csapeaks = peaks.peaks_from_model(model=csamodel,
                                      data=data,
                                      sphere=peaks.default_sphere,
                                      relative_peak_threshold=.1,
                                      min_separation_angle=25,
                                      mask=wm,
                                      sh_order=8,
                                      npeaks=5,
                                      parallel=True)
    et2 = time.time() - st2
    print 'fitting CSA model finished, running time is {}'.format(et2)

    # plot peaks
    # interactive = False
    # ren = window.Renderer()
    # slice_actor = actor.peak_slicer(csd_peaks.peak_dirs,
    #                           csd_peaks.peak_values,
    #                           colors=None)
    # slice_actor.RotateX(90)
示例#34
0
fodf_spheres = fvtk.sphere_funcs(sf_odf, sphere, scale=1.3, norm=True)

ren = fvtk.ren()
fvtk.add(ren, fodf_spheres)

print('Saving illustration as sf_odfs.png')
fvtk.record(ren, out_path='sf_odfs.png', size=(1000, 1000))

"""
We can extract the peaks from the ODF, and plot these as well
"""

sf_peaks = dpp.peaks_from_model(sf_model,
                                data_small,
                                sphere,
                                relative_peak_threshold=.5,
                                min_separation_angle=25,
                                return_sh=False)


fvtk.clear(ren)
fodf_peaks = fvtk.peaks(sf_peaks.peak_dirs, sf_peaks.peak_values, scale=1.3)
fvtk.add(ren, fodf_peaks)

print('Saving illustration as sf_peaks.png')
fvtk.record(ren, out_path='sf_peaks.png', size=(1000, 1000))

"""
Finally, we plot both the peaks and the ODFs, overlayed:
"""
示例#35
0
def test_peaksFromModelParallel():
    SNR = 100
    S0 = 100

    _, fbvals, fbvecs = get_data('small_64D')

    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)

    gtab = gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003], [0.0015, 0.0003, 0.0003]))

    data, _ = multi_tensor(gtab,
                           mevals,
                           S0,
                           angles=[(0, 0), (60, 0)],
                           fractions=[50, 50],
                           snr=SNR)

    # test equality with/without multiprocessing
    model = SimpleOdfModel(gtab)
    pam_multi = peaks_from_model(model,
                                 data,
                                 _sphere,
                                 .5,
                                 45,
                                 normalize_peaks=True,
                                 return_odf=True,
                                 return_sh=True,
                                 parallel=True)

    pam_single = peaks_from_model(model,
                                  data,
                                  _sphere,
                                  .5,
                                  45,
                                  normalize_peaks=True,
                                  return_odf=True,
                                  return_sh=True,
                                  parallel=False)

    assert_equal(pam_multi.gfa.dtype, pam_single.gfa.dtype)
    assert_equal(pam_multi.gfa.shape, pam_single.gfa.shape)
    assert_array_almost_equal(pam_multi.gfa, pam_single.gfa)

    assert_equal(pam_multi.qa.dtype, pam_single.qa.dtype)
    assert_equal(pam_multi.qa.shape, pam_single.qa.shape)
    assert_array_almost_equal(pam_multi.qa, pam_single.qa)

    assert_equal(pam_multi.peak_values.dtype, pam_single.peak_values.dtype)
    assert_equal(pam_multi.peak_values.shape, pam_single.peak_values.shape)
    assert_array_almost_equal(pam_multi.peak_values, pam_single.peak_values)

    assert_equal(pam_multi.peak_indices.dtype, pam_single.peak_indices.dtype)
    assert_equal(pam_multi.peak_indices.shape, pam_single.peak_indices.shape)
    assert_array_equal(pam_multi.peak_indices, pam_single.peak_indices)

    assert_equal(pam_multi.peak_dirs.dtype, pam_single.peak_dirs.dtype)
    assert_equal(pam_multi.peak_dirs.shape, pam_single.peak_dirs.shape)
    assert_array_almost_equal(pam_multi.peak_dirs, pam_single.peak_dirs)

    assert_equal(pam_multi.shm_coeff.dtype, pam_single.shm_coeff.dtype)
    assert_equal(pam_multi.shm_coeff.shape, pam_single.shm_coeff.shape)
    assert_array_almost_equal(pam_multi.shm_coeff, pam_single.shm_coeff)

    assert_equal(pam_multi.odf.dtype, pam_single.odf.dtype)
    assert_equal(pam_multi.odf.shape, pam_single.odf.shape)
    assert_array_almost_equal(pam_multi.odf, pam_single.odf)
示例#36
0
    def _run_interface(self, runtime):
        from dipy.reconst.peaks import peaks_from_model
        from dipy.tracking.eudx import EuDX
        from dipy.data import get_sphere
        # import marshal as pickle
        import pickle as pickle
        import gzip

        if (not (isdefined(self.inputs.in_model)
                 or isdefined(self.inputs.in_peaks))):
            raise RuntimeError(('At least one of in_model or in_peaks should '
                                'be supplied'))

        img = nb.load(self.inputs.in_file)
        imref = nb.four_to_three(img)[0]
        affine = img.affine

        data = img.get_data().astype(np.float32)
        hdr = imref.header.copy()
        hdr.set_data_dtype(np.float32)
        hdr['data_type'] = 16

        sphere = get_sphere('symmetric724')

        self._save_peaks = False
        if isdefined(self.inputs.in_peaks):
            IFLOGGER.info('Peaks file found, skipping ODF peaks search...')
            f = gzip.open(self.inputs.in_peaks, 'rb')
            peaks = pickle.load(f)
            f.close()
        else:
            self._save_peaks = True
            IFLOGGER.info('Loading model and computing ODF peaks')
            f = gzip.open(self.inputs.in_model, 'rb')
            odf_model = pickle.load(f)
            f.close()

            peaks = peaks_from_model(
                model=odf_model,
                data=data,
                sphere=sphere,
                relative_peak_threshold=self.inputs.peak_threshold,
                min_separation_angle=self.inputs.min_angle,
                parallel=self.inputs.multiprocess)

            f = gzip.open(self._gen_filename('peaks', ext='.pklz'), 'wb')
            pickle.dump(peaks, f, -1)
            f.close()

        hdr.set_data_shape(peaks.gfa.shape)
        nb.Nifti1Image(peaks.gfa.astype(np.float32), affine, hdr).to_filename(
            self._gen_filename('gfa'))

        IFLOGGER.info('Performing tractography')

        if isdefined(self.inputs.tracking_mask):
            msk = nb.load(self.inputs.tracking_mask).get_data()
            msk[msk > 0] = 1
            msk[msk < 0] = 0
        else:
            msk = np.ones(imref.shape)

        gfa = peaks.gfa * msk
        seeds = self.inputs.num_seeds

        if isdefined(self.inputs.seed_coord):
            seeds = np.loadtxt(self.inputs.seed_coord)

        elif isdefined(self.inputs.seed_mask):
            seedmsk = nb.load(self.inputs.seed_mask).get_data()
            assert (seedmsk.shape == data.shape[:3])
            seedmsk[seedmsk > 0] = 1
            seedmsk[seedmsk < 1] = 0
            seedps = np.array(np.where(seedmsk == 1), dtype=np.float32).T
            vseeds = seedps.shape[0]
            nsperv = (seeds // vseeds) + 1
            IFLOGGER.info('Seed mask is provided (%d voxels inside '
                          'mask), computing seeds (%d seeds/voxel).', vseeds,
                          nsperv)
            if nsperv > 1:
                IFLOGGER.info('Needed %d seeds per selected voxel (total %d).',
                              nsperv, vseeds)
                seedps = np.vstack(np.array([seedps] * nsperv))
                voxcoord = seedps + np.random.uniform(-1, 1, size=seedps.shape)
                nseeds = voxcoord.shape[0]
                seeds = affine.dot(
                    np.vstack((voxcoord.T, np.ones((1, nseeds)))))[:3, :].T

                if self.inputs.save_seeds:
                    np.savetxt(self._gen_filename('seeds', ext='.txt'), seeds)

        if isdefined(self.inputs.tracking_mask):
            tmask = msk
            a_low = 0.1
        else:
            tmask = gfa
            a_low = self.inputs.gfa_thresh

        eu = EuDX(
            tmask,
            peaks.peak_indices[..., 0],
            seeds=seeds,
            affine=affine,
            odf_vertices=sphere.vertices,
            a_low=a_low)

        ss_mm = [np.array(s) for s in eu]

        trkfilev = nb.trackvis.TrackvisFile(
            [(s, None, None) for s in ss_mm],
            points_space='rasmm',
            affine=np.eye(4))
        trkfilev.to_file(self._gen_filename('tracked', ext='.trk'))
        return runtime
示例#37
0
if __name__ == '__main__':
                   freeze_support()
img, gtab = read_stanford_hardi()

data = img.get_data()
maskdata, mask = median_otsu(data, 3, 1, False,
                           vol_idx=range(10, 50), dilate=2)
response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)

csd_model = ConstrainedSphericalDeconvModel(gtab, response)
sphere = get_sphere('symmetric724')

csd_peaks = peaks_from_model(model=csd_model,
                           data=data,
                           sphere=sphere,
                           mask=mask,
                           relative_peak_threshold=.5,
                           min_separation_angle=25,
                           parallel=True)
tensor_model = TensorModel(gtab, fit_method='WLS')
tensor_fit = tensor_model.fit(data, mask)

FA = fractional_anisotropy(tensor_fit.evals)
stopping_values = np.zeros(csd_peaks.peak_values.shape)
stopping_values[:] = FA[..., None]
ren = fvtk.ren()

slice_no = data.shape[2] / 2

fvtk.add(ren, fvtk.peaks(csd_peaks.peak_dirs[:, :, slice_no:slice_no + 1],
                       stopping_values[:, :, slice_no:slice_no + 1]))
示例#38
0
def deterministic(diffusion_file, bvecs_file, bvals_file, trackfile,
                  mask_file=None, order=4, nb_seeds_per_voxel=1, step=0.5):
    """ Compute a deterministic tractography using an ODF model.

    Parameters
    ----------
    diffusion_file: str (mandatory)
        a file containing the preprocessed diffusion data.
    bvecs_file: str (mandatory)
        a file containing the diffusion gradient directions.
    bvals_file: str (mandatory)
        a file containing the diffusion b-values.
    trackfile: str (mandatory)
        a file path where the fibers will be saved in trackvis format. 
    mask_file: str (optional, default None)
        an image used to mask the diffusion data during the tractography. If
        not set, all the image voxels are considered.
    order: int (optional, default 4)
        the order of the ODF model.
    nb_seeds_per_voxel: int (optional, default 1)
        the number of seeds per voxel used during the propagation.
    step: float (optional, default 0.5)
        the integration step in voxel fraction used during the propagation.

    Returns
    -------
    streamlines: tuple of 3-uplet
        the computed fiber tracks in trackvis format (points: ndarray shape
        (N,3) where N is the number of points, scalars: None or ndarray shape
        (N, M) where M is the number of scalars per point, properties: None or
        ndarray shape (P,) where P is the number of properties).
    hdr: structured array
        structured array with trackvis header fields (voxel size, voxel order,
        dim).
    """
    # Read diffusion sequence
    bvals, bvecs = read_bvals_bvecs(bvals_file, bvecs_file)
    gtab = gradient_table(bvals, bvecs)
    diffusion_image = nibabel.load(diffusion_file)
    diffusion_array = diffusion_image.get_data()
    if mask_file is not None:
        mask_array = nibabel.load(mask_file).get_data()
    else:
        mask_array = numpy.ones(diffusion_array.shape[:3], dtype=numpy.uint8)

    # Estimate ODF model
    csamodel = shm.CsaOdfModel(gtab, order)
    csapeaks = peaks.peaks_from_model(
        model=csamodel, data=diffusion_array, sphere=peaks.default_sphere,
        relative_peak_threshold=.8, min_separation_angle=45,
        mask=mask_array)

    # Compute deterministic tractography in voxel space so affine is equal
    # to identity
    seeds = utils.seeds_from_mask(mask_array, density=nb_seeds_per_voxel)
    streamline_generator = EuDX(
        csapeaks.peak_values, csapeaks.peak_indices,
        odf_vertices=peaks.default_sphere.vertices, a_low=.05, step_sz=step,
        seeds=seeds)
    affine = streamline_generator.affine

    # Save the tracks in trackvis format
    hdr = nibabel.trackvis.empty_header()
    hdr["voxel_size"] = diffusion_image.get_header().get_zooms()[:3]
    hdr["voxel_order"] = "LAS"
    hdr["dim"] = diffusion_array.shape[:3]
    streamlines = [track for track in streamline_generator]
    random.shuffle(streamlines)
    streamlines = ((track, None, None) for track in streamlines)
    nibabel.trackvis.write(trackfile, streamlines, hdr, points_space="voxel")

    return streamlines, hdr
from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel, auto_response

response, ratio = auto_response(gtab, data)
response = list(response)

peaks_sphere = get_sphere("symmetric362")

model = ConstrainedSphericalDeconvModel(gtab, response, sh_order=sh_order)

peaks_csd = peaks_from_model(
    model=model,
    data=data,
    sphere=peaks_sphere,
    relative_peak_threshold=0.5,
    min_separation_angle=25,
    mask=mask_vol,
    return_sh=True,
    sh_order=sh_order,
    normalize_peaks=True,
    parallel=False,
)
peaks_csd.affine = affine

fpeaks = dname + "peaks.npz"

save_peaks(fpeaks, peaks_csd)

from dipy.io.trackvis import save_trk
from dipy.tracking import utils
from dipy.tracking.local import ThresholdTissueClassifier, LocalTracking
"""
1. The first thing we need to begin fiber tracking is a way of getting
directions from this diffusion data set. In order to do that, we can fit the
data to a Constant Solid Angle ODF Model. This model will estimate the
orientation distribution function (ODF) at each voxel. The ODF is the
distribution of water diffusion as a function of direction. The peaks of an ODF
are good estimates for the orientation of tract segments at a point in the
image.
"""

from dipy.reconst.shm import CsaOdfModel
from dipy.reconst.peaks import peaks_from_model, default_sphere

csa_model = CsaOdfModel(gtab, sh_order=6)
csa_peaks = peaks_from_model(csa_model, data, default_sphere,
                             relative_peak_threshold=.8,
                             min_separation_angle=45,
                             mask=white_matter)

"""
2. Next we need some way of restricting the fiber tracking to areas with good
directionality information. We've already created the white matter mask,
but we can go a step further and restrict fiber tracking to those areas where
the ODF shows significant restricted diffusion by thresholding on
the general fractional anisotropy (GFA).
"""

from dipy.tracking.local import ThresholdTissueClassifier

classifier = ThresholdTissueClassifier(csa_peaks.gfa, .25)

"""
示例#41
0
def test_PeaksAndMetricsDirectionGetter():

    class SillyModel(object):
        def fit(self, data, mask=None):
            return SillyFit(self)

    class SillyFit(object):

        def __init__(self, model):
            self.model = model

        def odf(self, sphere):
            odf = np.zeros(sphere.theta.shape)
            r = np.random.randint(0, len(odf))
            odf[r] = 1
            return odf

    def get_direction(dg, point, dir):
        newdir = dir.copy()
        state = dg.get_direction(point, newdir)
        return (state, np.array(newdir))

    data = np.random.random((3, 4, 5, 2))
    peaks = peaks_from_model(SillyModel(), data, default_sphere,
                             relative_peak_threshold=.5,
                             min_separation_angle=25)
    peaks._initialize()

    up = np.zeros(3)
    up[2] = 1.
    down = -up

    for i in range(3-1):
        for j in range(4-1):
            for k in range(5-1):
                point = np.array([i, j, k], dtype=float)

                # Test that the angle threshold rejects points
                peaks.ang_thr = 0.
                state, nd = get_direction(peaks, point, up)
                npt.assert_equal(state, 1)

                # Here we leverage the fact that we know Hemispheres project
                # all their vertices into the z >= 0 half of the sphere.
                peaks.ang_thr = 90.
                state, nd = get_direction(peaks, point, up)
                npt.assert_equal(state, 0)
                expected_dir = peaks.peak_dirs[i, j, k, 0]
                npt.assert_array_almost_equal(nd, expected_dir)
                state, nd = get_direction(peaks, point, down)
                npt.assert_array_almost_equal(nd, -expected_dir)

                # Check that we can get directions at non-integer points
                point += np.random.random(3)
                state, nd = get_direction(peaks, point, up)
                npt.assert_equal(state, 0)

                # Check that points are rounded to get initial direction
                point -= .5
                id = peaks.initial_direction(point)
                # id should be a (1, 3) array
                npt.assert_array_almost_equal(id, [expected_dir])
示例#42
0
文件: reconst.py 项目: MarcCote/dipy
    def run(self, input_files, bvalues, bvectors, mask_files, sh_order=6,
            odf_to_sh_order=8, b0_threshold=0.0, bvecs_tol=0.01,
            extract_pam_values=False,
            out_dir='',
            out_pam='peaks.pam5', out_shm='shm.nii.gz',
            out_peaks_dir='peaks_dirs.nii.gz',
            out_peaks_values='peaks_values.nii.gz',
            out_peaks_indices='peaks_indices.nii.gz',
            out_gfa='gfa.nii.gz'):
        """ Constant Solid Angle.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        sh_order : int, optional
            Spherical harmonics order (default 6) used in the CSA fit.
        odf_to_sh_order : int, optional
            Spherical harmonics order used for peak_from_model to compress
            the ODF to spherical harmonics coefficients (default 8)
        b0_threshold : float, optional
            Threshold used to find b=0 directions
        bvecs_tol : float, optional
            Threshold used so that norm(bvec)=1 (default 0.01)
        extract_pam_values : bool, optional
            Wheter or not to save pam volumes as single nifti files.
        out_dir : string, optional
            Output directory (default input file directory)
        out_pam : string, optional
            Name of the peaks volume to be saved (default 'peaks.pam5')
        out_shm : string, optional
            Name of the shperical harmonics volume to be saved
            (default 'shm.nii.gz')
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved
            (default 'peaks_dirs.nii.gz')
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved
            (default 'peaks_values.nii.gz')
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved
            (default 'peaks_indices.nii.gz')
        out_gfa : string, optional
            Name of the generalise fa volume to be saved (default 'gfa.nii.gz')


        References
        ----------
        .. [1] Aganj, I., et al. 2009. ODF Reconstruction in Q-Ball Imaging
           with Solid Angle Consideration.
        """
        io_it = self.get_io_iterator()

        for (dwi, bval, bvec, maskfile, opam, oshm, opeaks_dir,
             opeaks_values, opeaks_indices, ogfa) in io_it:

            logging.info('Loading {0}'.format(dwi))
            vol = nib.load(dwi)
            data = vol.get_data()
            affine = vol.affine

            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            gtab = gradient_table(bvals, bvecs,
                                  b0_threshold=b0_threshold, atol=bvecs_tol)
            mask_vol = nib.load(maskfile).get_data().astype(np.bool)

            peaks_sphere = get_sphere('repulsion724')

            logging.info('Starting CSA computations {0}'.format(dwi))

            csa_model = CsaOdfModel(gtab, sh_order)

            peaks_csa = peaks_from_model(model=csa_model,
                                         data=data,
                                         sphere=peaks_sphere,
                                         relative_peak_threshold=.5,
                                         min_separation_angle=25,
                                         mask=mask_vol,
                                         return_sh=True,
                                         sh_order=odf_to_sh_order,
                                         normalize_peaks=True,
                                         parallel=False)
            peaks_csa.affine = affine

            save_peaks(opam, peaks_csa)

            logging.info('Finished CSA {0}'.format(dwi))

            if extract_pam_values:
                peaks_to_niftis(peaks_csa, oshm, opeaks_dir,
                                opeaks_values,
                                opeaks_indices, ogfa, reshape_dirs=True)

            dname_ = os.path.dirname(opam)
            if dname_ == '':
                logging.info('Pam5 file saved in current directory')
            else:
                logging.info(
                        'Pam5 file saved in {0}'.format(dname_))

            return io_it
示例#43
0
def deterministic(diffusion_file,
                  bvecs_file,
                  bvals_file,
                  outdir,
                  mask_file=None,
                  order=4,
                  nb_seeds_per_voxel=1,
                  step=0.5,
                  fmt="%.4f"):
    """ Compute a deterministic tractography using an ODF model.

    Parameters
    ----------
    diffusion_file: str (mandatory)
        a file containing the preprocessed diffusion data.
    bvecs_file: str (mandatory)
        a file containing the diffusion gradient directions.
    bvals_file: str (mandatory)
        a file containing the diffusion b-values.
    outdir: str (mandatory)
        the output directory.
    mask_file: str (optional, default None)
        an image used to mask the diffusion data during the tractography. If
        not set, all the image voxels are considered.
    order: int (optional, default 4)
        the order of the ODF model.
    nb_seeds_per_voxel: int (optional, default 1)
        the number of seeds per voxel used during the propagation.
    step: float (optional, default 0.5)
        the integration step in voxel fraction used during the propagation.
    fmt: str (optional, default '%.4f')
        the saved track elements format.

    Returns
    -------
    track_file: str
        a determinist model of the white matter organization.
    """
    # Read diffusion sequence
    bvals, bvecs = read_bvals_bvecs(bvals_file, bvecs_file)
    gtab = gradient_table(bvals, bvecs)
    diffusion_array = nibabel.load(diffusion_file).get_data()
    if mask_file is not None:
        mask_array = nibabel.load(mask_file).get_data()
    else:
        mask_array = numpy.ones(diffusion_array.shape[:3], dtype=numpy.uint8)

    # Estimate ODF model
    csamodel = shm.CsaOdfModel(gtab, order)
    csapeaks = peaks.peaks_from_model(model=csamodel,
                                      data=diffusion_array,
                                      sphere=peaks.default_sphere,
                                      relative_peak_threshold=.8,
                                      min_separation_angle=45,
                                      mask=mask_array)

    # Compute deterministic tractography in voxel space so affine is equal
    # to identity
    seeds = utils.seeds_from_mask(mask_array, density=nb_seeds_per_voxel)
    streamline_generator = EuDX(csapeaks.peak_values,
                                csapeaks.peak_indices,
                                odf_vertices=peaks.default_sphere.vertices,
                                a_low=.05,
                                step_sz=step,
                                seeds=seeds)
    affine = streamline_generator.affine
    streamlines = list(streamline_generator)

    # Save the tracks
    track_file = os.path.join(outdir, "fibers.txt")
    savetxt(track_file, streamlines, fmt=fmt)

    return track_file
def track(dname, fdwi, fbval, fbvec, fmask=None, seed_density=1, show=False):

    data, affine = load_nifti(fdwi)
    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs, b0_threshold=50)

    if fmask is None:
        from dipy.segment.mask import median_otsu
        b0_mask, mask = median_otsu(
            data)  # TODO: check parameters to improve the mask
    else:
        mask, mask_affine = load_nifti(fmask)
        mask = np.squeeze(mask)  #fix mask dimensions

    # compute DTI model
    from dipy.reconst.dti import TensorModel
    tenmodel = TensorModel(gtab)  #, fit_method='OLS') #, min_signal=5000)

    # fit the dti model
    tenfit = tenmodel.fit(data, mask=mask)

    # save fa
    ffa = dname + 'tensor_fa.nii.gz'

    fa_img = nib.Nifti1Image(tenfit.fa.astype(np.float32), affine)
    nib.save(fa_img, ffa)

    sh_order = 8  #TODO: check what that does
    if data.shape[-1] < 15:
        raise ValueError('You need at least 15 unique DWI volumes to '
                         'compute fiber ODFs. You currently have: {0}'
                         ' DWI volumes.'.format(data.shape[-1]))
    elif data.shape[-1] < 30:
        sh_order = 6

    # compute the response equation ?
    from dipy.reconst.csdeconv import auto_response
    response, ratio = auto_response(gtab, data)
    response = list(response)

    peaks_sphere = get_sphere('symmetric362')

    #TODO: check what that does
    peaks_csd = peaks_from_model(
        model=tenmodel,
        data=data,
        sphere=peaks_sphere,
        relative_peak_threshold=.5,  #.5
        min_separation_angle=25,
        mask=mask,
        return_sh=True,
        sh_order=sh_order,
        normalize_peaks=True,
        parallel=False)

    peaks_csd.affine = affine
    fpeaks = dname + 'peaks.npz'
    save_peaks(fpeaks, peaks_csd)

    from dipy.io.trackvis import save_trk
    from dipy.tracking import utils
    from dipy.tracking.local import (ThresholdTissueClassifier, LocalTracking)

    stopping_thr = 0.25  #0.25

    pam = load_peaks(fpeaks)

    #ffa = dname + 'tensor_fa_nomask.nii.gz'
    fa, fa_affine = load_nifti(ffa)

    classifier = ThresholdTissueClassifier(fa, stopping_thr)

    # seeds

    seed_mask = fa > 0.4  #0.4 #TODO: check this parameter

    seeds = utils.seeds_from_mask(seed_mask,
                                  density=seed_density,
                                  affine=affine)

    # tractography, if affine then in world coordinates
    streamlines = LocalTracking(pam,
                                classifier,
                                seeds,
                                affine=affine,
                                step_size=.5)

    # Compute streamlines and store as a list.
    streamlines = list(streamlines)

    ftractogram = dname + 'tractogram.trk'

    #save .trk
    save_trk_old_style(ftractogram, streamlines, affine, fa.shape)

    if show:
        #render
        show_results(data, streamlines, fa, fa_affine)
示例#45
0
    def run(self,
            input_files,
            bvalues_files,
            bvectors_files,
            mask_files,
            b0_threshold=0.0,
            bvecs_tol=0.01,
            roi_center=None,
            roi_radius=10,
            fa_thr=0.7,
            frf=None,
            extract_pam_values=False,
            sh_order=8,
            odf_to_sh_order=8,
            out_dir='',
            out_pam='peaks.pam5',
            out_shm='shm.nii.gz',
            out_peaks_dir='peaks_dirs.nii.gz',
            out_peaks_values='peaks_values.nii.gz',
            out_peaks_indices='peaks_indices.nii.gz',
            out_gfa='gfa.nii.gz'):
        """ Constrained spherical deconvolution

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues_files : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors_files : string
            Path to the bvectors files. This path may contain wildcards to use
            multiple bvectors files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions
        bvecs_tol : float, optional
            Bvecs should be unit vectors. (default:0.01)
        roi_center : variable int, optional
            Center of ROI in data. If center is None, it is assumed that it is
            the center of the volume with shape `data.shape[:3]` (default None)
        roi_radius : int, optional
            radius of cubic ROI in voxels (default 10)
        fa_thr : float, optional
            FA threshold for calculating the response function (default 0.7)
        frf : variable float, optional
            Fiber response function can be for example inputed as 15 4 4
            (from the command line) or [15, 4, 4] from a Python script to be
            converted to float and mutiplied by 10**-4 . If None
            the fiber response function will be computed automatically
            (default: None).
        extract_pam_values : bool, optional
            Save or not to save pam volumes as single nifti files.
        sh_order : int, optional
            Spherical harmonics order (default 6) used in the CSA fit.
        odf_to_sh_order : int, optional
            Spherical harmonics order used for peak_from_model to compress
            the ODF to spherical harmonics coefficients (default 8)
        out_dir : string, optional
            Output directory (default input file directory)
        out_pam : string, optional
            Name of the peaks volume to be saved (default 'peaks.pam5')
        out_shm : string, optional
            Name of the shperical harmonics volume to be saved
            (default 'shm.nii.gz')
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved
            (default 'peaks_dirs.nii.gz')
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved
            (default 'peaks_values.nii.gz')
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved
            (default 'peaks_indices.nii.gz')
        out_gfa : string, optional
            Name of the generalise fa volume to be saved (default 'gfa.nii.gz')


        References
        ----------
        .. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of
           the fibre orientation distribution in diffusion MRI: Non-negativity
           constrained super-resolved spherical deconvolution.
        """
        io_it = self.get_io_iterator()

        for (dwi, bval, bvec, maskfile, opam, oshm, opeaks_dir, opeaks_values,
             opeaks_indices, ogfa) in io_it:

            logging.info('Loading {0}'.format(dwi))
            img = nib.load(dwi)
            data = img.get_data()
            affine = img.affine

            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            print(b0_threshold, bvals.min())
            if b0_threshold < bvals.min():
                warn("b0_threshold (value: {0}) is too low, increase your "
                     "b0_threshold. It should higher than the first b0 value "
                     "({1}).".format(b0_threshold, bvals.min()))
            gtab = gradient_table(bvals,
                                  bvecs,
                                  b0_threshold=b0_threshold,
                                  atol=bvecs_tol)
            mask_vol = nib.load(maskfile).get_data().astype(np.bool)

            n_params = ((sh_order + 1) * (sh_order + 2)) / 2
            if data.shape[-1] < n_params:
                raise ValueError('You need at least {0} unique DWI volumes to '
                                 'compute fiber odfs. You currently have: {1}'
                                 ' DWI volumes.'.format(
                                     n_params, data.shape[-1]))

            if frf is None:
                logging.info('Computing response function')
                if roi_center is not None:
                    logging.info(
                        'Response ROI center:\n{0}'.format(roi_center))
                    logging.info(
                        'Response ROI radius:\n{0}'.format(roi_radius))
                response, ratio, nvox = auto_response(
                    gtab,
                    data,
                    roi_center=roi_center,
                    roi_radius=roi_radius,
                    fa_thr=fa_thr,
                    return_number_of_voxels=True)
                response = list(response)

            else:
                logging.info('Using response function')
                if isinstance(frf, str):
                    l01 = np.array(literal_eval(frf), dtype=np.float64)
                else:
                    l01 = np.array(frf, dtype=np.float64)

                l01 *= 10**-4
                response = np.array([l01[0], l01[1], l01[1]])
                ratio = l01[1] / l01[0]
                response = (response, ratio)

            logging.info(
                'Eigenvalues for the frf of the input data are :{0}'.format(
                    response[0]))
            logging.info(
                'Ratio for smallest to largest eigen value is {0}'.format(
                    ratio))

            peaks_sphere = get_sphere('repulsion724')

            logging.info('CSD computation started.')
            csd_model = ConstrainedSphericalDeconvModel(gtab,
                                                        response,
                                                        sh_order=sh_order)

            peaks_csd = peaks_from_model(model=csd_model,
                                         data=data,
                                         sphere=peaks_sphere,
                                         relative_peak_threshold=.5,
                                         min_separation_angle=25,
                                         mask=mask_vol,
                                         return_sh=True,
                                         sh_order=sh_order,
                                         normalize_peaks=True,
                                         parallel=False)
            peaks_csd.affine = affine

            save_peaks(opam, peaks_csd)

            logging.info('CSD computation completed.')

            if extract_pam_values:
                peaks_to_niftis(peaks_csd,
                                oshm,
                                opeaks_dir,
                                opeaks_values,
                                opeaks_indices,
                                ogfa,
                                reshape_dirs=True)

            dname_ = os.path.dirname(opam)
            if dname_ == '':
                logging.info('Pam5 file saved in current directory')
            else:
                logging.info('Pam5 file saved in {0}'.format(dname_))

            return io_it
示例#46
0
t1 = read_stanford_t1()
t1_data = t1.get_data()
"""
We've loaded an image called ``labels_img`` which is a map of tissue types such
that every integer value in the array ``labels`` represents an anatomical
structure or tissue type [#]_. For this example, the image was created so that
white matter voxels have values of either 1 or 2. We'll use
``peaks_from_model`` to apply the ``CsaOdfModel`` to each white matter voxel
and estimate fiber orientations which we can use for tracking.
"""

white_matter = (labels == 1) | (labels == 2)
csamodel = shm.CsaOdfModel(gtab, 6)
csapeaks = peaks.peaks_from_model(model=csamodel,
                                  data=data,
                                  sphere=peaks.default_sphere,
                                  relative_peak_threshold=.8,
                                  min_separation_angle=45,
                                  mask=white_matter)
"""
Now we can use EuDX to track all of the white matter. To keep things reasonably
fast we use ``density=2`` which will result in 8 seeds per voxel. We'll set
``a_low`` (the parameter which determines the threshold of FA/QA under which
tracking stops) to be very low because we've already applied a white matter
mask.
"""

seeds = utils.seeds_from_mask(white_matter, density=2)
streamline_generator = EuDX(csapeaks.peak_values,
                            csapeaks.peak_indices,
                            odf_vertices=peaks.default_sphere.vertices,
                            a_low=.05,
示例#47
0
"""
We will first run `peaks_from_model` using parallelism with 2 processes. If
`nbr_processes` is None (default option) then this function will find the total
number of processors from the operating system and use this number as
`nbr_processes`. Sometimes it makes sense to use only a few of the processes in
order to allow resources for other applications. However, most of the times
using the default option will be sufficient.
"""

csapeaks_parallel = peaks_from_model(model=csamodel,
                                     data=maskdata,
                                     sphere=sphere,
                                     relative_peak_threshold=.5,
                                     min_separation_angle=25,
                                     mask=mask,
                                     return_odf=False,
                                     normalize_peaks=True,
                                     npeaks=5,
                                     parallel=True,
                                     nbr_processes=2)

time_parallel = time.time() - start_time
print("peaks_from_model using 2 processes ran in : " +
      str(time_parallel) + " seconds")

"""
peaks_from_model using 2 process ran in  : 114.333221912 seconds, using 2 process

If we don't use parallelism then we need to set `parallel=False`:
"""
示例#48
0
def compCsdPeaks(basename, output, mask=None):
    home = os.getcwd()

    fbase = basename

    fdwi = fbase+".nii.gz"
    fbval = fbase+".bval"
    fbvec = fbase+".bvec"

    print fdwi,fbval,fbvec

    img = nib.load(fdwi)
    data = img.get_data()
    zooms = img.get_header().get_zooms()[:3]
    affine = img.get_affine()

    # reslice image into 1x1x1 iso voxel

#    new_zooms = (1., 1., 1.)
#    data, affine = resample(data, affine, zooms, new_zooms)
#    img = nib.Nifti1Image(data, affine)
#
#    print data.shape
#    print img.get_header().get_zooms()
#    print "###"
#
#    nib.save(img, 'C5_iso.nii.gz')

    bval, bvec = dio.read_bvals_bvecs(fbval, fbvec)
    # invert bvec z for GE scanner
    bvec[:,1]*= -1
    gtab = dgrad.gradient_table(bval, bvec)

    if mask is None:
        print 'generate mask'
        maskdata, mask = median_otsu(data, 3, 1, False, vol_idx=range(10, 50), dilate=2)
    else:
        mask = nib.load(mask).get_data()
        maskdata = applymask(data, mask)



#    tenmodel = dti.TensorModel(gtab)
#    tenfit = tenmodel.fit(data)
#    print('Computing anisotropy measures (FA, MD, RGB)')
#
#
#    FA = fractional_anisotropy(tenfit.evals)
#    FA[np.isnan(FA)] = 0
#
#    fa_img = nib.Nifti1Image(FA.astype(np.float32), img.get_affine())
#    nib.save(fa_img, 'FA.nii.gz')
#
#    return





    # estimate response function, ratio should be ~0.2

    response, ratio = auto_response(gtab, maskdata, roi_radius=10, fa_thr=0.7)
    print response, ratio



    # reconstruct csd model
    print "estimate csd_model"
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)
    #a_data = maskdata[40:80, 40:80, 60:61]
    #c_data = maskdata[40:80, 59:60, 50:80]
    #s_data = maskdata[59:60, 40:70, 30:80]
    #data_small = a_data
    #
#    evals = response[0]
#    evecs = np.array([[0, 1, 0], [0, 0, 1], [1, 0, 0]]).T
    #sphere = get_sphere('symmetric362')
    #csd_fit = csd_model.fit(data_small)
    #csd_odf = csd_fit.odf(sphere)
    #
    #
    #fodf_spheres = fvtk.sphere_funcs(csd_odf, sphere, scale=1, norm=False)
    ##fodf_spheres.GetProperty().SetOpacity(0.4)
    ##
    #fvtk.add(ren, fodf_spheres)
    ##fvtk.add(ren, fodf_peaks)
    #fvtk.show(ren)
    #
    #sys.exit()

    # fit csd peaks
    print "fit csd peaks"
    print "peaks_from_model using core# =" + str(multiprocessing.cpu_count())

    sphere = get_sphere('symmetric724')
    csd_peaks = peaks_from_model(model=csd_model,
                                 data=data,
                                 sphere=sphere,
                                 mask=mask,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=True, nbr_processes=10)

    #fodf_peaks = fvtk.peaks(csd_peaks.peak_dirs, csd_peaks.peak_values, scale=1)

#    fd, fname = mkstemp()
#    pickle.save_pickle(fname, csd_peaks)
#
#    os.close(fd)

    #pickle.dump(csd_peaks, open("csd.p", "wb"))


    with open(output, 'wb') as fout:
        cPickle.dump(csd_peaks, fout, -1)


    print "done writing to file %s"% (output)
    return csd_peaks
示例#49
0
from dipy.data import get_sphere

sphere = get_sphere()
from dipy.reconst import sfm

sf_model = sfm.SparseFascicleModel(gtab, sphere=sphere, l1_ratio=0.5, alpha=0.001, response=response[0])

"""
We fit this model to the data in each voxel in the white-matter mask, so that
we can use these directions in tracking:
"""

from dipy.reconst.peaks import peaks_from_model

pnm = peaks_from_model(
    sf_model, data, sphere, relative_peak_threshold=0.5, min_separation_angle=25, mask=white_matter, parallel=True
)

"""
A ThresholdTissueClassifier object is used to segment the data to track only
through areas in which the Generalized Fractional Anisotropy (GFA) is
sufficiently high.
"""

from dipy.tracking.local import ThresholdTissueClassifier

classifier = ThresholdTissueClassifier(pnm.gfa, 0.25)

"""
Tracking will be started from a set of seeds evenly distributed in the white
matter:
示例#50
0
def dodata(f_name, data_path):
    dipy_home = pjoin(os.path.expanduser('~'), 'dipy_data')
    folder = pjoin(dipy_home, data_path)
    fraw = pjoin(folder, f_name + '.nii.gz')
    fbval = pjoin(folder, f_name + '.bval')
    fbvec = pjoin(folder, f_name + '.bvec')
    flabels = pjoin(folder, f_name + '.nii-label.nii.gz')

    bvals, bvecs = read_bvals_bvecs(fbval, fbvec)
    gtab = gradient_table(bvals, bvecs)

    img = nib.load(fraw)
    data = img.get_data()
    affine = img.get_affine()

    label_img = nib.load(flabels)
    labels = label_img.get_data()
    lap = through_label_sl.label_position(labels, labelValue=1)
    dataslice = data[40:80, 20:80, lap[2][2] / 2]
    #print lap[2][2]/2

    #get_csd_gfa(f_name,data,gtab,dataslice)

    maskdata, mask = median_otsu(data,
                                 2,
                                 1,
                                 False,
                                 vol_idx=range(10, 50),
                                 dilate=2)  #不去背景
    """ get fa and tensor evecs and ODF"""
    from dipy.reconst.dti import TensorModel, mean_diffusivity
    tenmodel = TensorModel(gtab)
    tenfit = tenmodel.fit(data, mask)

    sphere = get_sphere('symmetric724')

    FA = fractional_anisotropy(tenfit.evals)
    FA[np.isnan(FA)] = 0

    np.save(os.getcwd() + '\zhibiao' + f_name + '_FA.npy', FA)
    fa_img = nib.Nifti1Image(FA.astype(np.float32), affine)
    nib.save(fa_img, os.getcwd() + '\zhibiao' + f_name + '_FA.nii.gz')
    print('Saving "DTI_tensor_fa.nii.gz" sucessful.')
    evecs_img = nib.Nifti1Image(tenfit.evecs.astype(np.float32), affine)
    nib.save(evecs_img,
             os.getcwd() + '\zhibiao' + f_name + '_DTI_tensor_evecs.nii.gz')
    print('Saving "DTI_tensor_evecs.nii.gz" sucessful.')
    MD1 = mean_diffusivity(tenfit.evals)
    nib.save(nib.Nifti1Image(MD1.astype(np.float32), img.get_affine()),
             os.getcwd() + '\zhibiao' + f_name + '_MD.nii.gz')

    #tensor_odfs = tenmodel.fit(data[20:50, 55:85, 38:39]).odf(sphere)
    #from dipy.reconst.odf import gfa
    #dti_gfa=gfa(tensor_odfs)

    wm_mask = (np.logical_or(FA >= 0.4,
                             (np.logical_and(FA >= 0.15, MD >= 0.0011))))

    response = recursive_response(gtab,
                                  data,
                                  mask=wm_mask,
                                  sh_order=8,
                                  peak_thr=0.01,
                                  init_fa=0.08,
                                  init_trace=0.0021,
                                  iter=8,
                                  convergence=0.001,
                                  parallel=False)
    from dipy.reconst.csdeconv import ConstrainedSphericalDeconvModel
    csd_model = ConstrainedSphericalDeconvModel(gtab, response)

    #csd_fit = csd_model.fit(data)

    from dipy.direction import peaks_from_model

    csd_peaks = peaks_from_model(model=csd_model,
                                 data=data,
                                 sphere=sphere,
                                 relative_peak_threshold=.5,
                                 min_separation_angle=25,
                                 parallel=False)

    GFA = csd_peaks.gfa

    nib.save(GFA, os.getcwd() + '\zhibiao' + f_name + '_MSD.nii.gz')
    print('Saving "GFA.nii.gz" sucessful.')

    from dipy.reconst.shore import ShoreModel
    asm = ShoreModel(gtab)
    print('Calculating...SHORE msd')
    asmfit = asm.fit(data, mask)
    msd = asmfit.msd()
    msd[np.isnan(msd)] = 0

    #print GFA[:,:,slice].T
    print('Saving msd_img.png')
    nib.save(msd, os.getcwd() + '\zhibiao' + f_name + '_GFA.nii.gz')
示例#51
0
"""
`Peaks_from_model` is used to calculate properties of the ODFs (Orientation
Distribution Function) and return for
example the peaks and their indices, or GFA which is similar to FA but for ODF
based models. This function mainly needs a reconstruction model, the data and a
sphere as input. The sphere is an object that represents the spherical discrete
grid where the ODF values will be evaluated.
"""

sphere = get_sphere('symmetric724')

csapeaks = peaks_from_model(model=csamodel,
                            data=maskdata,
                            sphere=sphere,
                            relative_peak_threshold=.5,
                            min_separation_angle=25,
                            mask=mask,
                            return_odf=False,
                            normalize_peaks=True)

GFA = csapeaks.gfa

print('GFA.shape (%d, %d, %d)' % GFA.shape)

"""
GFA.shape ``(81, 106, 76)``

Apart from GFA, csapeaks also has the attributes peak_values, peak_indices and
ODF. peak_values shows the maxima values of the ODF and peak_indices gives us
their position on the discrete sphere that was used to do the reconstruction of
the ODF. In order to obtain the full ODF, return_odf should be True. Before
示例#52
0
ODF = gqfit.odf(sphere)

print('ODF.shape (%d, %d, %d)' % ODF.shape)

"""
ODF.shape ``(96, 96, 724)``

Using peaks_from_model we can find the main peaks of the ODFs and other
properties.
"""

gqpeaks = peaks_from_model(model=gqmodel,
                           data=dataslice,
                           sphere=sphere,
                           relative_peak_threshold=.5,
                           min_separation_angle=25,
                           mask=mask,
                           return_odf=False,
                           normalize_peaks=True)

gqpeak_values = gqpeaks.peak_values

"""
gqpeak_indices show which sphere points have the maximum values.
"""

gqpeak_indices = gqpeaks.peak_indices

"""
It is also possible to calculate GFA.
"""
示例#53
0
    def _run_interface(self, runtime):
        from dipy.reconst.peaks import peaks_from_model
        from dipy.tracking.eudx import EuDX
        from dipy.data import get_sphere
        # import marshal as pickle
        import pickle as pickle
        import gzip

        if (not (isdefined(self.inputs.in_model)
                 or isdefined(self.inputs.in_peaks))):
            raise RuntimeError(('At least one of in_model or in_peaks should '
                                'be supplied'))

        img = nb.load(self.inputs.in_file)
        imref = nb.four_to_three(img)[0]
        affine = img.affine

        data = img.get_data().astype(np.float32)
        hdr = imref.header.copy()
        hdr.set_data_dtype(np.float32)
        hdr['data_type'] = 16

        sphere = get_sphere('symmetric724')

        self._save_peaks = False
        if isdefined(self.inputs.in_peaks):
            IFLOGGER.info('Peaks file found, skipping ODF peaks search...')
            f = gzip.open(self.inputs.in_peaks, 'rb')
            peaks = pickle.load(f)
            f.close()
        else:
            self._save_peaks = True
            IFLOGGER.info('Loading model and computing ODF peaks')
            f = gzip.open(self.inputs.in_model, 'rb')
            odf_model = pickle.load(f)
            f.close()

            peaks = peaks_from_model(
                model=odf_model,
                data=data,
                sphere=sphere,
                relative_peak_threshold=self.inputs.peak_threshold,
                min_separation_angle=self.inputs.min_angle,
                parallel=self.inputs.multiprocess)

            f = gzip.open(self._gen_filename('peaks', ext='.pklz'), 'wb')
            pickle.dump(peaks, f, -1)
            f.close()

        hdr.set_data_shape(peaks.gfa.shape)
        nb.Nifti1Image(peaks.gfa.astype(np.float32), affine,
                       hdr).to_filename(self._gen_filename('gfa'))

        IFLOGGER.info('Performing tractography')

        if isdefined(self.inputs.tracking_mask):
            msk = nb.load(self.inputs.tracking_mask).get_data()
            msk[msk > 0] = 1
            msk[msk < 0] = 0
        else:
            msk = np.ones(imref.shape)

        gfa = peaks.gfa * msk
        seeds = self.inputs.num_seeds

        if isdefined(self.inputs.seed_coord):
            seeds = np.loadtxt(self.inputs.seed_coord)

        elif isdefined(self.inputs.seed_mask):
            seedmsk = nb.load(self.inputs.seed_mask).get_data()
            assert (seedmsk.shape == data.shape[:3])
            seedmsk[seedmsk > 0] = 1
            seedmsk[seedmsk < 1] = 0
            seedps = np.array(np.where(seedmsk == 1), dtype=np.float32).T
            vseeds = seedps.shape[0]
            nsperv = (seeds // vseeds) + 1
            IFLOGGER.info(
                'Seed mask is provided (%d voxels inside '
                'mask), computing seeds (%d seeds/voxel).', vseeds, nsperv)
            if nsperv > 1:
                IFLOGGER.info('Needed %d seeds per selected voxel (total %d).',
                              nsperv, vseeds)
                seedps = np.vstack(np.array([seedps] * nsperv))
                voxcoord = seedps + np.random.uniform(-1, 1, size=seedps.shape)
                nseeds = voxcoord.shape[0]
                seeds = affine.dot(
                    np.vstack((voxcoord.T, np.ones((1, nseeds)))))[:3, :].T

                if self.inputs.save_seeds:
                    np.savetxt(self._gen_filename('seeds', ext='.txt'), seeds)

        if isdefined(self.inputs.tracking_mask):
            tmask = msk
            a_low = 0.1
        else:
            tmask = gfa
            a_low = self.inputs.gfa_thresh

        eu = EuDX(tmask,
                  peaks.peak_indices[..., 0],
                  seeds=seeds,
                  affine=affine,
                  odf_vertices=sphere.vertices,
                  a_low=a_low)

        ss_mm = [np.array(s) for s in eu]

        trkfilev = nb.trackvis.TrackvisFile([(s, None, None) for s in ss_mm],
                                            points_space='rasmm',
                                            affine=np.eye(4))
        trkfilev.to_file(self._gen_filename('tracked', ext='.trk'))
        return runtime
示例#54
0
    parallel. If ``nbr_processes`` is None it will figure out automatically the
    number of CPUs available in your system. Alternatively, you can set
    ``nbr_processes`` manually. Here, we show an example were we compare the
    duration of execution with or without parallelism.
    """

    import time
    from dipy.reconst.peaks import peaks_from_model

    start_time = time.time()
    csd_peaks_parallel = peaks_from_model(model=csd_model,
                                          data=data,
                                          sphere=sphere,
                                          relative_peak_threshold=.5,
                                          min_separation_angle=25,
                                          mask=mask,
                                          return_sh=True,
                                          return_odf=False,
                                          normalize_peaks=True,
                                          npeaks=5,
                                          parallel=True,
                                          nbr_processes=None)

    time_parallel = time.time() - start_time
    print("peaks_from_model using " + str(multiprocessing.cpu_count()) +
          " process ran in :" + str(time_parallel) + " seconds")
    """
    ``peaks_from_model`` using 8 processes ran in :114.425682068 seconds
    """

    start_time = time.time()
    csd_peaks = peaks_from_model(model=csd_model,
示例#55
0
Distribution Function) and return for
example the peaks and their indices, or GFA which is similar to FA but for ODF
based models. This function mainly needs a reconstruction model, the data and a
sphere as input. The sphere is an object that represents the spherical discrete
grid where the ODF values will be evaluated.
"""

sphere = get_sphere('symmetric724')

start_time = time.time()
csapeaks_parallel = peaks_from_model(model=csamodel,
                                     data=data,
                                     sphere=sphere,
                                     relative_peak_threshold=.8,
                                     min_separation_angle=45,
                                     mask=None,
                                     return_odf=False,
                                     normalize_peaks=True,
                                     npeaks=5,
                                     parallel=True,
                                     nbr_processes=2)  # default multiprocessing.cpu_count()

time_parallel = time.time() - start_time
print("peaks_from_model using 2 processes ran in : " +
      str(time_parallel) + " seconds")
"""
peaks_from_model using 2 process ran in  : 114.333221912 seconds, using 2 process
"""

start_time = time.time()
csapeaks = peaks_from_model(model=csamodel,
示例#56
0
    def run(self,
            input_files,
            bvalues,
            bvectors,
            mask_files,
            b0_threshold=0.0,
            extract_pam_values=False,
            out_dir='',
            out_pam='peaks.pam5',
            out_shm='shm.nii.gz',
            out_peaks_dir='peaks_dirs.nii.gz',
            out_peaks_values='peaks_values.nii.gz',
            out_peaks_indices='peaks_indices.nii.gz',
            out_gfa='gfa.nii.gz'):
        """ Workflow for peaks computation. Peaks computation is done by 'globing'
            ``input_files`` and saves the peaks in a directory specified by
            ``out_dir``.

        Parameters
        ----------
        input_files : string
            Path to the input volumes. This path may contain wildcards to
            process multiple inputs at once.
        bvalues : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        bvectors : string
            Path to the bvalues files. This path may contain wildcards to use
            multiple bvalues files at once.
        mask_files : string
            Path to the input masks. This path may contain wildcards to use
            multiple masks at once. (default: No mask used)
        b0_threshold : float, optional
            Threshold used to find b=0 directions
        extract_pam_values : bool, optional
            Wheter or not to save pam volumes as single nifti files.
        out_dir : string, optional
            Output directory (default input file directory)
        out_pam : string, optional
            Name of the peaks volume to be saved (default 'peaks.pam5')
        out_shm : string, optional
            Name of the shperical harmonics volume to be saved
            (default 'shm.nii.gz')
        out_peaks_dir : string, optional
            Name of the peaks directions volume to be saved
            (default 'peaks_dirs.nii.gz')
        out_peaks_values : string, optional
            Name of the peaks values volume to be saved
            (default 'peaks_values.nii.gz')
        out_peaks_indices : string, optional
            Name of the peaks indices volume to be saved
            (default 'peaks_indices.nii.gz')
        out_gfa : string, optional
            Name of the generalise fa volume to be saved (default 'gfa.nii.gz')
        """
        io_it = self.get_io_iterator()

        for dwi, bval, bvec, maskfile, opam, oshm, opeaks_dir, \
            opeaks_values, opeaks_indices, ogfa in io_it:

            logging.info('Computing fiber odfs for {0}'.format(dwi))
            vol = nib.load(dwi)
            data = vol.get_data()
            affine = vol.get_affine()

            bvals, bvecs = read_bvals_bvecs(bval, bvec)
            gtab = gradient_table(bvals, bvecs, b0_threshold=b0_threshold)
            mask_vol = nib.load(maskfile).get_data().astype(np.bool)

            sh_order = 8
            if data.shape[-1] < 15:
                raise ValueError('You need at least 15 unique DWI volumes to '
                                 'compute fiber odfs. You currently have: {0}'
                                 ' DWI volumes.'.format(data.shape[-1]))
            elif data.shape[-1] < 30:
                sh_order = 6

            response, ratio = auto_response(gtab, data)
            response = list(response)

            logging.info(
                'Eigenvalues for the frf of the input data are :{0}'.format(
                    response[0]))
            logging.info(
                'Ratio for smallest to largest eigen value is {0}'.format(
                    ratio))

            peaks_sphere = get_sphere('symmetric362')

            csa_model = CsaOdfModel(gtab, sh_order)

            peaks_csa = peaks_from_model(model=csa_model,
                                         data=data,
                                         sphere=peaks_sphere,
                                         relative_peak_threshold=.5,
                                         min_separation_angle=25,
                                         mask=mask_vol,
                                         return_sh=True,
                                         sh_order=sh_order,
                                         normalize_peaks=True,
                                         parallel=False)
            peaks_csa.affine = affine

            save_peaks(opam, peaks_csa)

            if extract_pam_values:
                peaks_to_niftis(peaks_csa,
                                oshm,
                                opeaks_dir,
                                opeaks_values,
                                opeaks_indices,
                                ogfa,
                                reshape_dirs=True)

            logging.info('Peaks saved in {0}'.format(os.path.dirname(opam)))

            return io_it