示例#1
0
    & (mesh.gridCC[ind_active, 2] > -10000.0)
    & (mesh.gridCC[ind_active, 2] < 0.0)
)
conductivity_model[ind_pipe] = pipe_conductivity

# Plot conductivity model
mpl.rcParams.update({"font.size": 12})
fig = plt.figure(figsize=(5.5, 6))

plotting_map = maps.InjectActiveCells(mesh, ind_active, np.nan)
log_model = np.log10(conductivity_model)  # So scaling is log-scale

ax1 = fig.add_axes([0.14, 0.1, 0.6, 0.85])
mesh.plotImage(
    plotting_map * log_model,
    ax=ax1,
    grid=False,
    clim=(np.log10(layer_conductivity), np.log10(pipe_conductivity)),
)
ax1.set_title("Conductivity Model (Survey in red)")

ax1.plot(receiver_locations[:, 0], receiver_locations[:, 2], "r.")

ax2 = fig.add_axes([0.76, 0.1, 0.05, 0.85])
norm = mpl.colors.Normalize(
    vmin=np.log10(layer_conductivity), vmax=np.log10(pipe_conductivity)
)
cbar = mpl.colorbar.ColorbarBase(
    ax2, norm=norm, orientation="vertical", format="$10^{%.1f}$"
)
cbar.set_label("Conductivity [S/m]", rotation=270, labelpad=15, size=12)
示例#2
0
hr = [(dr, ncr), (dr, npad_r, exp_r)]
hz = [(dz, npad_z, -exp_z), (dz, ncz), (dz, npad_z, exp_z)]

# A value of 1 is used to define the discretization in phi for this case.
mesh = CylMesh([hr, 1, hz], x0='00C')

# The bottom end of the vertical axis of rotational symmetry
x0 = mesh.x0

# The total number of cells
nC = mesh.nC

# An (nC, 3) array containing the cell-center locations
cc = mesh.gridCC

# Plot the cell volumes.
v = mesh.vol

fig = plt.figure(figsize=(6, 4))
ax = fig.add_subplot(111)
mesh.plotImage(np.log10(v), grid=True, ax=ax)
ax.set_xlabel('r')
ax.set_xbound(mesh.x0[0], mesh.x0[0] + np.sum(mesh.hx))
ax.set_ybound(mesh.x0[2], mesh.x0[2] + np.sum(mesh.hz))
ax.set_title('Cell Log-Volumes')

##############################################################################
# Notice that we do not plot the discretization in phi as it is irrelevant.
#