& (mesh.gridCC[ind_active, 2] > -10000.0) & (mesh.gridCC[ind_active, 2] < 0.0) ) conductivity_model[ind_pipe] = pipe_conductivity # Plot conductivity model mpl.rcParams.update({"font.size": 12}) fig = plt.figure(figsize=(5.5, 6)) plotting_map = maps.InjectActiveCells(mesh, ind_active, np.nan) log_model = np.log10(conductivity_model) # So scaling is log-scale ax1 = fig.add_axes([0.14, 0.1, 0.6, 0.85]) mesh.plotImage( plotting_map * log_model, ax=ax1, grid=False, clim=(np.log10(layer_conductivity), np.log10(pipe_conductivity)), ) ax1.set_title("Conductivity Model (Survey in red)") ax1.plot(receiver_locations[:, 0], receiver_locations[:, 2], "r.") ax2 = fig.add_axes([0.76, 0.1, 0.05, 0.85]) norm = mpl.colors.Normalize( vmin=np.log10(layer_conductivity), vmax=np.log10(pipe_conductivity) ) cbar = mpl.colorbar.ColorbarBase( ax2, norm=norm, orientation="vertical", format="$10^{%.1f}$" ) cbar.set_label("Conductivity [S/m]", rotation=270, labelpad=15, size=12)
hr = [(dr, ncr), (dr, npad_r, exp_r)] hz = [(dz, npad_z, -exp_z), (dz, ncz), (dz, npad_z, exp_z)] # A value of 1 is used to define the discretization in phi for this case. mesh = CylMesh([hr, 1, hz], x0='00C') # The bottom end of the vertical axis of rotational symmetry x0 = mesh.x0 # The total number of cells nC = mesh.nC # An (nC, 3) array containing the cell-center locations cc = mesh.gridCC # Plot the cell volumes. v = mesh.vol fig = plt.figure(figsize=(6, 4)) ax = fig.add_subplot(111) mesh.plotImage(np.log10(v), grid=True, ax=ax) ax.set_xlabel('r') ax.set_xbound(mesh.x0[0], mesh.x0[0] + np.sum(mesh.hx)) ax.set_ybound(mesh.x0[2], mesh.x0[2] + np.sum(mesh.hz)) ax.set_title('Cell Log-Volumes') ############################################################################## # Notice that we do not plot the discretization in phi as it is irrelevant. #