def kernel(rvs, idx): rvs, _ = fun_mcmc.running_covariance_step( rvs, data[idx], window_size=window_size) return (rvs, idx + 1), (rvs.mean, rvs.covariance)
def kernel(rcs, idx): rcs, _ = fun_mcmc.running_covariance_step( rcs, data[idx], axis=aggregation) return (rcs, idx + 1), ()