def test_fn(model):
     top1, top5, losses = classifier.test(eval_data_loader, model,
                                          cc.criterion,
                                          [cc.tflogger, cc.pylogger], None,
                                          args)
     # pdb.set_trace()
     return top1, top5, losses
示例#2
0
 def eval_fn(model):
     if memoized_data_loader:
         loss = 0
         for images, targets in memoized_data_loader:
             outputs = model(images)
             loss += criterion(outputs, targets).item()
         loss = loss / len(memoized_data_loader)
     else:
         _, _, loss = classifier.test(eval_data_loader, model, criterion, loggers, None, args)
     return loss
 def calib_eval_fn(model):
     classifier.test(calib_data_loader, model, cc.criterion, [], None, args)
示例#4
0
 def test_fn(model):
     top1, top5, loss = classifier.test(test_data_loader, model, criterion, loggers, None, args)
     return OrderedDict([('top-1', top1), ('top-5', top5), ('loss', loss)])
 def test_fn(model):
     return classifier.test(test_data_loader, model, cc.criterion,
                            [cc.tflogger, cc.pylogger], None, args)