示例#1
0
def tst_lomax():
    t = Lomax.samples_(1.1, 50, size=10000)
    start = time.time()
    params = Lomax.est_params(t)
    end = time.time()
    print("Estimating parameters of Lomax took: " + str(end - start))
    return abs(params[0] - 1.1) < 1e-1
示例#2
0
def lomax_mix():
    k1 = 1.1
    lmb1 = 20
    k2 = 0.1
    lmb2 = 30
    n_samples = 10000
    u = 0.3
    censor = 8.0

    t_len = int(n_samples * (1 - u))
    s_len = int(n_samples * u)
    t_samples = Lomax.samples_(k1, lmb1, size=t_len)
    s_samples = Lomax.samples_(k2, lmb2, size=s_len)
    t = t_samples[t_samples < censor]
    s = s_samples[s_samples < censor]
    x_censored = np.ones(sum(t_samples > censor) + sum(s_samples > censor))
示例#3
0
def compare_loglogistic_fitting_approaches():
    """
    This experiment convinced me to abandon the Lomax
    and Weibull based LogLogistic estimation.
    """
    ti, xi = mixed_loglogistic_model()
    wbl = Weibull.est_params(ti)
    lmx = Lomax.est_params(ti)
    #Now estimate Lomax and Weibull params and construct feature vector.
    x_features = cnstrct_feature(ti)
    beta = sum(x_features * LogLogistic.lin_betas)
    alpha = sum(x_features * LogLogistic.lin_alphas)
示例#4
0
     lambda theta, N: tensorflow_distributions.Poisson(rate=theta["lambda"]
                                                       * N)
 },
 "lomax": {
     "parameters": {
         "log_concentration": {
             "support": [-10, 10],
             "activation function": identity
         },
         "log_scale": {
             "support": [-10, 10],
             "activation function": identity
         }
     },
     "class":
     lambda theta: Lomax(concentration=tf.exp(theta["log_concentration"]),
                         scale=tf.exp(theta["log_scale"]))
 },
 "zero-inflated poisson": {
     "parameters": {
         "pi": {
             "support": [0, 1],
             "activation function": sigmoid
         },
         "log_lambda": {
             "support": [-10, 10],
             "activation function": identity
         }
     },
     "class":
     lambda theta: ZeroInflated(tensorflow_distributions.Poisson(
         rate=tf.exp(theta["log_lambda"])),
import numpy as np
from distributions.lomax import Lomax
from distributions.weibull import Weibull
from scipy.stats import poisson
import matplotlib.pyplot as plt

## Over dispersed
k = 1.2
lmb = 25
durtn = 1.0
mean = Lomax.mean_s(k, lmb)
aa = np.array([
    sum(np.cumsum(Lomax.samples_(k, lmb, size=100)) < durtn)
    for _ in range(1000)
])

expctd_mean = durtn / mean
actual_mean = np.mean(aa)
print("Diff:" + str(actual_mean - expctd_mean))
var = np.var(aa)


## Under dispersed
# k=0.4; lmb=5.0; durtn=20.0
def weibull_to_count(k=0.4, lmb=1.0, durtn=20.0):
    mean = Weibull.mean_s(k, lmb)
    aa1 = np.array([
        sum(np.cumsum(Weibull.samples_(k, lmb, size=100)) < durtn)
        for _ in range(1000)
    ])
    expctd_mean = durtn / mean