def test_logical_fat_tree():
    """Test the creation of a logical fat tree network topology"""

    from distriopt import VirtualNetwork

    virtual = VirtualNetwork.create_fat_tree(
        k=4, density=2, req_cores=2, req_memory=8000, req_rate=200
    )
    assert virtual.number_of_nodes() == 36
    assert len(virtual.edges()) == 48
    for node in virtual.nodes():
        assert virtual.req_cores(node) == 2
        assert virtual.req_memory(node) == 8000
    for i, j in virtual.edges():
        assert virtual.req_rate(i, j) == 200
示例#2
0
            node: node in the virtual topology
            return: name of the physical host to use
        """
        if self.prob == None:
            self.solve()
        place = self.prob.solution.node_info(node)

        return place

    def placeLink(self, link):
        """ Returns physical placement of the link
            link: link in the virtual topology
            returns: list of placements for the link
        """
        if self.prob == None:
            self.solve()

        place = self.prob.solution.link_mapping[link]

        return place


if __name__ == '__main__':
    #physical = PhysicalNetwork.from_files("/Users/giuseppe/.distrinet/gros_partial")
    virtual_topo = VirtualNetwork.create_fat_tree(k=2,
                                                  density=2,
                                                  req_cores=2,
                                                  req_memory=100,
                                                  req_rate=100)
    from distriopt.packing import CloudInstance
示例#3
0
def time_comparison_grid5000(timelimit, net_type="fat-tree"):
    """
    Custom Network  (for the moment fat tree and random are available on virtual.py)
    """
    # create the physical network representation
    physical = PhysicalNetwork.from_files("grisou")

    solvers_ilp = {"cplex"}
    solvers_heu = {
        "GreedyPartition": EmbedGreedy,
        "k-balanced": EmbedBalanced,
        "DivideSwap": EmbedPartition,
    }

    res_experiments = {"x": [], "time": {}, "value": {}}
    for method_name in solvers_ilp | solvers_heu.keys():
        res_experiments["time"][method_name] = {}
        res_experiments["value"][method_name] = {}

    if net_type == "fat-tree":
        min_v = 2
        max_v = 12
        step_size = 2
    elif net_type == "random":
        min_v = 25
        max_v = 175
        step_size = 25
    else:
        raise ValueError("invalid experiment type")

    for v in range(min_v, max_v + 1, step_size):
        res_experiments["x"].append(v)

        if net_type == "fat-tree":
            virtual = VirtualNetwork.create_fat_tree(v)
        else:
            virtual = VirtualNetwork.create_random_nw(v)

        # ILP solver
        prob = EmbedILP(virtual, physical)

        for solver_name in solvers_ilp:

            time_solution, status = prob.solve(solver_name=solver_name,
                                               timelimit=timelimit)

            if SolutionStatus[status] != "Solved":
                res_experiments["time"][solver_name][v] = time_solution
                res_experiments["value"][solver_name][v] = prob.current_val
            else:
                res_experiments["time"][solver_name][v] = time_solution
                res_experiments["value"][solver_name][
                    v] = prob.solution.n_machines_used

        # Heuristic approaches
        for heu in solvers_heu:
            prob = solvers_heu[heu](virtual, physical)
            time_solution, status = prob.solve()

            if SolutionStatus[status] == "Not Solved":
                sys.exit("Failed to solve")
            elif SolutionStatus[status] == "Unfeasible":
                sys.exit("unfeasible Problem")
            else:
                pass

            res_experiments["time"][heu][v] = time_solution
            res_experiments["value"][heu][v] = prob.solution.n_machines_used

        pprint.pprint(res_experiments)

        with open(
                os.path.join("results", f"res_{net_type}_{timelimit}s.pickle"),
                "wb") as res_file:
            pickle.dump(res_experiments,
                        res_file,
                        protocol=pickle.HIGHEST_PROTOCOL)