def test_logical_fat_tree(): """Test the creation of a logical fat tree network topology""" from distriopt import VirtualNetwork virtual = VirtualNetwork.create_fat_tree( k=4, density=2, req_cores=2, req_memory=8000, req_rate=200 ) assert virtual.number_of_nodes() == 36 assert len(virtual.edges()) == 48 for node in virtual.nodes(): assert virtual.req_cores(node) == 2 assert virtual.req_memory(node) == 8000 for i, j in virtual.edges(): assert virtual.req_rate(i, j) == 200
node: node in the virtual topology return: name of the physical host to use """ if self.prob == None: self.solve() place = self.prob.solution.node_info(node) return place def placeLink(self, link): """ Returns physical placement of the link link: link in the virtual topology returns: list of placements for the link """ if self.prob == None: self.solve() place = self.prob.solution.link_mapping[link] return place if __name__ == '__main__': #physical = PhysicalNetwork.from_files("/Users/giuseppe/.distrinet/gros_partial") virtual_topo = VirtualNetwork.create_fat_tree(k=2, density=2, req_cores=2, req_memory=100, req_rate=100) from distriopt.packing import CloudInstance
def time_comparison_grid5000(timelimit, net_type="fat-tree"): """ Custom Network (for the moment fat tree and random are available on virtual.py) """ # create the physical network representation physical = PhysicalNetwork.from_files("grisou") solvers_ilp = {"cplex"} solvers_heu = { "GreedyPartition": EmbedGreedy, "k-balanced": EmbedBalanced, "DivideSwap": EmbedPartition, } res_experiments = {"x": [], "time": {}, "value": {}} for method_name in solvers_ilp | solvers_heu.keys(): res_experiments["time"][method_name] = {} res_experiments["value"][method_name] = {} if net_type == "fat-tree": min_v = 2 max_v = 12 step_size = 2 elif net_type == "random": min_v = 25 max_v = 175 step_size = 25 else: raise ValueError("invalid experiment type") for v in range(min_v, max_v + 1, step_size): res_experiments["x"].append(v) if net_type == "fat-tree": virtual = VirtualNetwork.create_fat_tree(v) else: virtual = VirtualNetwork.create_random_nw(v) # ILP solver prob = EmbedILP(virtual, physical) for solver_name in solvers_ilp: time_solution, status = prob.solve(solver_name=solver_name, timelimit=timelimit) if SolutionStatus[status] != "Solved": res_experiments["time"][solver_name][v] = time_solution res_experiments["value"][solver_name][v] = prob.current_val else: res_experiments["time"][solver_name][v] = time_solution res_experiments["value"][solver_name][ v] = prob.solution.n_machines_used # Heuristic approaches for heu in solvers_heu: prob = solvers_heu[heu](virtual, physical) time_solution, status = prob.solve() if SolutionStatus[status] == "Not Solved": sys.exit("Failed to solve") elif SolutionStatus[status] == "Unfeasible": sys.exit("unfeasible Problem") else: pass res_experiments["time"][heu][v] = time_solution res_experiments["value"][heu][v] = prob.solution.n_machines_used pprint.pprint(res_experiments) with open( os.path.join("results", f"res_{net_type}_{timelimit}s.pickle"), "wb") as res_file: pickle.dump(res_experiments, res_file, protocol=pickle.HIGHEST_PROTOCOL)