def test_median1(): """ Test median on binomial distribution """ ns = range(2, 10) ps = np.linspace(0, 1, 11) for n, p in product(ns, ps): d = binomial(n, p) yield assert_true, median(d) in [floor(n*p), n*p, ceil(n*p)]
def test_median2(): """ Test median on a generic distribution """ d = D([(0, 0), (1, 0), (2, 1), (3, 1)], [1 / 8, 1 / 8, 3 / 8, 3 / 8]) assert np.allclose(median(d), [2, 1])
def test_median1(n, p): """ Test median on binomial distribution """ d = binomial(n, p) assert median(d) in [floor(n * p), n * p, ceil(n * p)]
def test_median2(): d = D([(0, 0), (1, 0), (2, 1), (3, 1)], [1/8, 1/8, 3/8, 3/8]) assert_array_almost_equal(median(d), [2, 1])
def test_median1(): ns = range(2, 10) ps = np.linspace(0, 1, 11) for n, p in product(ns, ps): d = binomial(n, p) assert(median(d) in [floor(n*p), n*p, ceil(n*p)])
def test_median2(): """ Test median on a generic distribution """ d = D([(0, 0), (1, 0), (2, 1), (3, 1)], [1/8, 1/8, 3/8, 3/8]) assert np.allclose(median(d), [2, 1])
def test_median1(n, p): """ Test median on binomial distribution """ d = binomial(n, p) assert median(d) in [floor(n*p), n*p, ceil(n*p)]
def test_median2(): """ Test median on a generic distribution """ d = D([(0, 0), (1, 0), (2, 1), (3, 1)], [1/8, 1/8, 3/8, 3/8]) assert_array_almost_equal(median(d), [2, 1])