hyper_params={ 'filter_type': 'Hann', 'frequency_scaling': 0.8 }) cg_reconstructor = CGReconstructor(ray_trafo, reco_space.zero(), 4) gn_reconstructor = GaussNewtonReconstructor(ray_trafo, reco_space.zero(), 2) lw_reconstructor = LandweberReconstructor(ray_trafo, reco_space.zero(), 8) mlem_reconstructor = MLEMReconstructor(ray_trafo, 0.5 * reco_space.one(), 1) reconstructors = [ fbp_reconstructor, cg_reconstructor, gn_reconstructor, lw_reconstructor, mlem_reconstructor ] options = {'save_iterates': True} eval_tt.append_all_combinations(reconstructors=reconstructors, test_data=[test_data], options=options) # %% run task table results = eval_tt.run() results.apply_measures([PSNR, SSIM]) print(results) # %% plot reconstructions fig = results.plot_all_reconstructions(fig_size=(9, 4), vrange='individual') # %% plot convergence results.plot_convergence(1, fig_size=(9, 6), gridspec_kw={'hspace': 0.5}) results.plot_performance(PSNR)
hyper_params={ 'filter_type': 'Hann', 'frequency_scaling': 0.8 }) fbp_unet_reconstructor = FBPUNetReconstructor(ray_trafo, batch_size=64, use_cuda=True) state_filename = 'fbp_unet_reconstructor_lodopab_baseline_state.pt' with open(state_filename, 'wb') as file: r = requests.get('https://github.com/jleuschn/supp.dival/raw/master/' 'examples/' 'fbp_unet_reconstructor_lodopab_baseline_state.pt') file.write(r.content) fbp_unet_reconstructor.load_params(state_filename) reconstructors = [fbp_reconstructor, fbp_unet_reconstructor] eval_tt.append_all_combinations(reconstructors=reconstructors, test_data=[test_data], datasets=[dataset], options={'skip_training': True}) # %% run task table results = eval_tt.run() results.apply_measures([PSNR, SSIM]) print(results) # %% plot reconstructions fig = results.plot_all_reconstructions(fig_size=(9, 4), vrange='individual')