示例#1
0
def pivot(queryset, row, column, data, aggregation=Sum, choices='auto'):
    """
    Takes a queryset and pivots it. The result is a table with one record
    per unique value in the `row` column, a column for each unique value in the `column` column
    and values in the table aggregated by the data column.

    :param queryset: a QuerySet, Model, or Manager
    :param row: string, name of column that will key the rows
    :param column: string, name of column that will define columns
    :param data: column name or Combinable
    :param aggregation: aggregation function to apply to data column
    :return: ValuesQueryset
    """
    queryset = _get_queryset(queryset)

    column_values = get_column_values(queryset, column, choices)

    annotations = _get_annotations(column, column_values, data, aggregation)

    values = [row]

    row_choices = get_field_choices(queryset, row)
    if row_choices:
        whens = (When(Q(**{row: value}),
                      then=Value(display_value, output_field=CharField()))
                 for value, display_value in row_choices)
        row_display = Case(*whens)
        queryset = queryset.annotate(
            **{'get_' + row + '_display': row_display})
        values.append('get_' + row + '_display')

    return queryset.values(*values).annotate(**annotations)
示例#2
0
def pivot(queryset,
          rows,
          column,
          data,
          aggregation=Sum,
          choices='auto',
          display_transform=lambda s: s,
          default=None,
          row_range=()):
    """
    Takes a queryset and pivots it. The result is a table with one record
    per unique value in the `row` column, a column for each unique value in the `column` column
    and values in the table aggregated by the data column.

    :param queryset: a QuerySet, Model, or Manager
    :param rows: list of strings, name of columns that will key the rows
    :param column: string, name of column that will define columns
    :param data: column name or Combinable
    :param aggregation: aggregation function to apply to data column
    :param display_transform: function that takes a string and returns a string
    :param default: default value to pass to the aggregate function when no record is found
    :param row_range: iterable with the expected range of rows in the result
    :return: ValuesQueryset
    """
    values = [rows] if isinstance(rows, six.string_types) else list(rows)

    queryset = _get_queryset(queryset)

    column_values = get_column_values(queryset, column, choices)

    annotations = _get_annotations(column,
                                   column_values,
                                   data,
                                   aggregation,
                                   display_transform,
                                   default=default)
    for row in values:
        row_choices = get_field_choices(queryset, row)
        if row_choices:
            whens = (When(Q(**{row: value}),
                          then=Value(display_value, output_field=CharField()))
                     for value, display_value in row_choices)
            row_display = Case(*whens)
            queryset = queryset.annotate(
                **{'get_' + row + '_display': row_display})
            values.append('get_' + row + '_display')

    values_list = queryset.values(*values).annotate(**annotations)

    if row_range:
        attributes = [value[0] for value in column_values]
        values_list = default_fill(values_list,
                                   values[0],
                                   row_range,
                                   fill_value=default,
                                   fill_attributes=attributes)

    return values_list