示例#1
0
def main():

    # load the data
    train_input, train_target, train_classes, test_input, test_target, test_classes = \
        prologue.generate_pair_sets(nb=1000)

    # normalize it
    mean, std = train_input.mean(), train_input.std()

    train_input.sub_(mean).div_(std)
    test_input.sub_(mean).div_(std)

    train_input, train_target, train_class = Variable(train_input), Variable(
        train_target), Variable(train_classes)
    test_input, test_target = Variable(test_input), Variable(test_target)

    nb_epochs = NB_EPOCH
    mini_batch_size = BATCH
    learning_rates = LEARNING_RATE

    # all our models and optimizers we implemented
    # models= [Net1, Net2, NetSharing1, NetSharing2, NetSharing3 ,NetAux1, NetAux2, NetAux3, Net3]
    # optimizers = [optim.SGD, optim.Adam, optim.RMSprop]

    # test the following configuration
    models = [NetAux3]
    optimizers = [optim.SGD]

    grid_search(models, optimizers, learning_rates, train_input, train_target,
                train_class, test_input, test_target, nb_epochs,
                mini_batch_size)
示例#2
0
def pickle_output(param):
    """
    """
    train_input, train_target, train_class, test_input, test_target, test_class = \
        prologue.generate_pair_sets(N_PAIRS)

    # Normalization of the data
    train_input /= train_input.max()
    test_input /= test_input.max()

    model = create_Net(param)
    model.load_state_dict(torch.load("nets/{}.pkl".format(param['net'])))

    x_out_tr, y_out_tr, _ = model.eval()(train_input)
    x_out_te, y_out_te, _ = model.eval()(test_input)
    class_proba_tr, class_proba_te = torch.cat(
        [x_out_tr, y_out_tr], 1), torch.cat([x_out_te, y_out_te], 1)

    pickle.dump(
        {
            'tr_pred_proba': class_proba_tr,
            'tr_target': train_target,
            'tr_class': train_class,
            'te_pred_proba': class_proba_te,
            'te_target': test_target,
            'te_class': test_class
        }, open("data/{}_pred.pkl".format(param['net']), 'wb'))
示例#3
0
 def __init__(
     self,
     param={
         "nb": 1000,
         "nb_classes": 10,
         "normalized": True,
         "one_hot_labels": False,
         "conv3D": False
     }):
     self.nb = param["nb"]
     self.nb_classes = param["nb_classes"]
     self.train_input, self.train_target, self.train_class, self.test_input, self.test_target, self.test_class = \
     prologue.generate_pair_sets(self.nb)
     # Normalization
     if param["normalized"]:
         self._normalize_data()
         self.isNormalized = True
     else:
         self.isNormalized = False
     # One hot labels
     if param["one_hot_labels"]:
         self._get_one_hot_labels()
         self.hasHot = True
     else:
         self.hasHot = False
     # Conv3D reshape dataset
     if param["conv3D"]:
         self._get_conv3D_data()
         self.isConv3D = True
     else:
         self.isConv3D = False
示例#4
0
def load_dataset(
    N: int = 1000, batch_size: int = 50, standardize: bool = True
) -> Tuple[DataLoader, DataLoader]:
    """
    Load MNIST dataset in the following format:
    * input of size [N, 2, 14, 14]: two 14x14 images (a, b)
    * target of size [1]: 1 if digit in image a <= digit in image b
    * class of size [2]: digits in images (a, b)

    Args:
        N (int, optional): Number of samples to fetch for each set.
            Defaults to 1000.
        batch_size (int, optional): Batch size for DataLoader. Defaults to 50.
        standardize (bool, optional): Standardize train and test sets. Defaults to True.

    Returns:
        Tuple[DataLoader, DataLoader]: train and test DataLoaders
    """

    train_input, train_target, train_classes, \
        test_input, test_target, test_classes = generate_pair_sets(N)
    
    if standardize:
        mu, sigma = train_input.mean(), train_input.std()
        
        # Standardize train and test with train statistics
        train_input = standardized(train_input, mu, sigma)
        test_input = standardized(test_input, mu, sigma)

    train = TensorDataset(train_input, train_target, train_classes)
    test = TensorDataset(test_input, test_target, test_classes)
    
    return DataLoader(train, batch_size=batch_size, shuffle=True), \
        DataLoader(test, batch_size=batch_size)
示例#5
0
def main():
    # loading data
    train_input, train_target, train_class, test_input, test_target, test_class = prologue.generate_pair_sets(
        1000)

    # if you wish to train an optimized CNN model
    # just uncomment this and comment the other model
    '''
    temp_train_input,temp_train_target,temp_train_class=init.data_init(train_input,train_target, train_class, num=1000)
    model_cnn=model.ConvNet_2(bn=True)
    model_cnn.apply(init.weights_init)
    model_cnn,train_loss_cnn,train_accuracy_cnn, test_loss_cnn,test_accuracy_cnn=\
           train.train_model(model_cnn,\
                       temp_train_input,temp_train_target,\
                       test_input, test_target,\
                       if_print=True, epochs=45,
                       optim='Adam', learning_rate=0.01)
    evaluate.evaluate_result(train_loss_cnn,train_accuracy_cnn, test_loss_cnn,test_accuracy_cnn, \
               'Learning Curve of Optimized CNN')
   '''

    # if you wish to train a model with weight sharing and auxiliary loss
    # just uncomment this and comment the other model
    '''
    temp_train_input,temp_train_target,temp_train_class=init.data_init(train_input,train_target, train_class, num=1000)
    model_ws_al=model.ConvNet_WS()
    model_ws_al.apply(init.weights_init)
    model_ws_al,train_loss_ws_al,train_accuracy_ws_al, test_loss_ws_al,test_accuracy_ws_al=\
                                  train.train_model_WS(model_ws_al, \
                                                       temp_train_input,temp_train_target,temp_train_class,\
                                                       test_input, test_target, test_class,\
                                                       optim='Adam', decay=True,
                                                       if_auxiliary_loss=True,epochs=32,if_print=True,
                                                       auxiliary_loss_ratio=5)
    evaluate.evaluate_result(train_loss_ws_al,train_accuracy_ws_al, test_loss_ws_al,test_accuracy_ws_al,\
                'Learning Curve of Second ConvNet with Weight Sharing and Auxiliart Loss') 
                
    
                

    
    '''
    # training data random initialization
    temp_train_input, temp_train_target, temp_train_class = init.data_init(
        train_input, train_target, train_class, num=1000)
    # import the model
    model_digit = model.CNN_digit()
    # model weight initialization
    model_digit.apply(init.weights_init)
    # get the training history of the model with input hyperparameters
    _,_,_,train_accuracy_from_digit,_,_,test_accuracy_from_digit=train.train_by_digit(model_digit,\
                                                                                      temp_train_input,temp_train_target,temp_train_class, \
                                                                                      test_input, test_target, test_class, \
                                                                                      if_print=True, \
                                                                                      epochs=25,optim='Adam',learning_rate=0.01)
    # plot the learning curves and print the accuracy on testing set
    evaluate.evaluate_accuracy(train_accuracy_from_digit,test_accuracy_from_digit,\
                               'Accuracy of Boolean Classification from CNN Trained Directly on Digit Class')
示例#6
0
def load_random_datasets():
    """ Function to generate new random training and test sets for various runs """
    train_input, train_target, train_classes, test_input, test_target, test_classes = \
    prologue.generate_pair_sets(nb=1000)
    """ Feature Normalization: We normalize the train and test datasets with the mean and variance of the training set (we don't want to introduce information of the test set into the training set by normalizing over the whole dataset)"""
    train_input, mean_input, std_input = standardize(train_input)
    test_input = (test_input - mean_input) / std_input

    return train_input, train_target, train_classes, test_input, test_target, test_classes
示例#7
0
def boosted_Net(net_dicts):
    """
    Trains multiple nets and boosts the results to have better perfs
    """  
    print("Creating boosted prediction with {} nets".format(len(net_dicts)))
    train_input, train_target, train_class, test_input, test_target, test_class = \
        prologue.generate_pair_sets(N_PAIRS)
    
    # Normalization of the data
    train_input /= train_input.max()
    test_input /= test_input.max()
    
    pred_tr = []; pred_te = [];
    for i, dic in enumerate(net_dicts):
        print("Net {}/{}".format(i+1, len(net_dicts)))
        for k in dic.keys():
            print(" {}: {} |".format(k, dic[k]), end='')
        print('')
        
        # setting a random seed
        if dic['seed'] != None:
            torch.manual_seed(dic['seed'])
            
        model = create_Net(dic)
        # Training each of the models
        model.train(True)
        for i in [0, 1]:                
                train_model(model, Variable(train_input[:, i, :, :].view(-1, 1, 14, 14)), 
                                   Variable(train_class[:, i].long()), dic['batch_size'], dic['epochs'])
        model.train(False)
        
        print(test_model(model, test_input, test_target, test_class))        
        
        output_tr = []; output_te= [];
        for i in [0, 1]:
            out = model(Variable(train_input[:, i, :, :].view(-1, 1, 14, 14)))
            output_tr.append(out.data.max(1)[1])
            
            out = model(Variable(test_input[:, i, :, :].view(-1, 1, 14, 14)))
            output_te.append(out.data.max(1)[1])
            
        pred_tr.append(torch.cat(output_tr))
        pred_te.append(torch.cat(output_te))
        
        del model

    target = torch.cat([train_class[:,0], train_class[:,1]])
    boost_model = xgb.XGBClassifier().fit(torch.stack(pred_tr, 1), target)
    boost_pred = boost_model.predict(torch.stack(pred_te, 1))
    
    pred_classes = torch.Tensor(np.stack([boost_pred[:1000], boost_pred[1000:]], axis=1))
    print("Classification error w/ boosting: {:.4}%".format((boost_pred != torch.cat([test_class[:,0], test_class[:,1]]).numpy()).sum() /boost_pred.shape[0]*100))
    print("Comparison error w/ boosting: {:.4}%\n".format((compare_digits(pred_classes) - test_target.int()).abs().sum().item() / test_target.size(0)*100))
def load_normal_data(n_samples):
    '''
    Load and normalize the dataset. 
    Params:
    n_samples 	: number of samples to be loaded
    Returns:
    train_X, train_Y, train_Class, test_X, test_Y, test_Class : the data
    '''
    train_X, train_Y, train_Class, test_X, test_Y, test_Class = prologue.generate_pair_sets(
        n_samples)
    mu, std = train_X.mean(), train_X.std()
    train_X.sub_(mu).div_(std)
    test_X.sub_(mu).div_(std)
    return train_X, train_Y, train_Class, test_X, test_Y, test_Class
def data_generation():
    # this function is to generate train and test data
    global data_train, data_test, data_train_loader, data_test_loader
    # using helper to generate 1000 pairs of train data and test data
    data = prologue.generate_pair_sets(1000)

    # create torch style data set
    data_train = PairDataset(data, train=True, aux_labels=True)
    data_test = PairDataset(data, train=False, aux_labels=True)

    # create data loader
    data_train_loader = DataLoader(data_train,
                                   batch_size=100,
                                   shuffle=True,
                                   num_workers=12)
    data_test_loader = DataLoader(data_test, batch_size=100, num_workers=12)
示例#10
0
def load_data(n_pairs: int, batch_size: int) -> ty.Tuple[data.DataLoader]:
    """
    Load MNIT image pair data.
    
    :param n_pairs: number of image pairs
    :param batch_size: DataLoader batch size
    """
    # pair_sets = (train_input, train_target, train_classes, test_input, test_target, test_classes)
    pair_sets = prologue.generate_pair_sets(n_pairs)

    train_data = ImagePairDataset(pair_sets[0], pair_sets[1], pair_sets[2])
    test_data = ImagePairDataset(pair_sets[3], pair_sets[4], pair_sets[5])

    train_loader = data.DataLoader(train_data, batch_size=batch_size)
    test_loader = data.DataLoader(test_data, batch_size=batch_size)

    return train_loader, test_loader
示例#11
0
def get_results(n_pairs=1000, rounds=10):
    results = []
    model_params = [[False, False, True], [True, False, True],
                    [False, True, True], [True, True, True],
                    [False, False, False], [True, False, False],
                    [False, True, False], [True, True, False]]

    for p in model_params:
        model = Model(weight_sharing=p[0], aux=p[1], binary=p[2])
        accuracies = []
        model_id = model_params.index(p) + 1

        print("Model {}:".format(model_id))

        for i in range(rounds):

            # generate train/test data
            train_input, train_target, train_classes, test_input, test_target, test_classes = \
                prologue.generate_pair_sets(n_pairs)

            # normalize inputs
            train_input = train_input.sub_(torch.mean(train_input)).div_(
                torch.std(train_input))
            test_input = test_input.sub_(torch.mean(test_input)).div_(
                torch.std(test_input))

            # train model
            train_model(model, train_input, train_target, train_classes)

            # compute test accuracy
            accuracy = compute_accuracy(test_input, test_target, model)
            accuracies.append(accuracy)

        accuracy_avg = round(sum(accuracies) / rounds, 2)
        accuracy_stdev = round(
            (sum([(x - accuracy_avg)**2
                  for x in accuracies]) / (rounds - 1))**0.5, 2)
        results.append([model_id, accuracy_avg, accuracy_stdev])

        print("Avg test acc %: {}".format(accuracy_avg))
        print("Stdev test acc %: {}".format(accuracy_stdev))
        print('-' * 30)

    return results
示例#12
0
def test_param(param):
    
    print("Testing...", end='')
    for k in param.keys():
        print(" {}: {} |".format(k, param[k]), end='')
    print('')    
    
    train_input, train_target, train_class, test_input, test_target, test_class = \
        prologue.generate_pair_sets(N_PAIRS)
        
    # Normalization of the data
    train_input /= train_input.max()
    test_input /= test_input.max()
    
    # setting a random seed
    if param['seed'] != None:
        torch.manual_seed(param['seed'])
        
    model = create_Net(param)  
    model.train(True)
    for i in [0, 1]:
        train_model(model, Variable(train_input[:, i, :, :].view(-1, 1, 14, 14)), 
                           Variable(train_class[:, i].long()), param['batch_size'], param['epochs'])
    
    model.train(False)
    #TODO this is temp otherwise 2x computation
#    nb_test_errors, _, _, _ = test_model(model, test_input, test_target, test_class)
    nb_test_errors = 0               
    for i in [0, 1]:
        nb_test_errors += compute_nb_errors(model, Variable(test_input[:, i, :, :].view(-1, 1, 14, 14)), 
                                            Variable(test_class[:, i].long()), 20)    
    
    print('Classification test error: {:0.2f}% {:d}/{:d}'.format( nb_test_errors / test_input.size(0) /2*100, 
                                                                  nb_test_errors, 2*test_input.size(0)))

    pred_class = torch.stack([model(Variable(test_input[:, 0, :, :].view(-1, 1, 14, 14))).data.max(1)[1], 
                              model(Variable(test_input[:, 1, :, :].view(-1, 1, 14, 14))).data.max(1)[1]], dim=1)
    
    print("Comparison error: {:0.2f}% {:d}/{:d}".format( (compare_digits(pred_class) - test_target.int()).abs().sum().item() /test_target.size(0)*100, 
          (compare_digits(pred_class) - test_target.int()).abs().sum().item(), 
          test_input.size(0)))
    
    del model
示例#13
0
def test_param(param, save=False):
    
    print("Testing...", end='')
    for k in param.keys():
        print(" {}: {} |".format(k, param[k]), end='')
    print('')    
    
    train_input, train_target, train_class, test_input, test_target, test_class = \
        prologue.generate_pair_sets(N_PAIRS)
        
    # Normalization of the data
    train_input /= train_input.max()
    test_input /= test_input.max()
    
    # setting a random seed
    if param['seed'] != None:
        torch.manual_seed(param['seed'])
        
    model = create_Net(param)  
    model.train(True)
    train_model(model, train_input, train_target, train_class, param['batch_size'], param['epochs'])    
    model.train(False)
    
    class_err, class_per, comp_err, comp_per = test_model(model,  test_input, test_target, test_class)
    
    print('Classification test error: {:0.2f}% {:d}/{:d}'.format(class_per, class_err, 2*N_PAIRS))
    
    print("Net comparison error: {:0.2f}% {:d}/{:d}".format(comp_per, comp_err, N_PAIRS))
    
    with open("{}results.log".format(param['net']), mode='at') as f:
        f.write("Class error: {:.4}%, Comp error: {:.4}%\n".format(class_per, comp_per))
            
    if save:
        if 'nets' not in os.listdir():
                dir_ = 'nets'
                try:  
                    os.mkdir(dir_)
                except OSError:  
                    print ("Creation of the directory %s failed" % dir_)
                else:  
                    print ("Successfully created the directory %s " % dir_)
                    
        torch.save(model.state_dict(), "nets/{}.pkl".format(param['net']))
示例#14
0
def load_data(N=1000, batch_size=50, seed=42):
    '''
    Load training and test data from MNIST
    Data: pairs of MNIST images
    Label: 1 if first digit is lesser or equal than the second, 0 otherwise

    Parameters
    -------
    N
        Number of examples to generate for each set
    batch_size
        Batch size (for loading datasets into DataLoader type)
    seed
        Random seed (for reproducibility)

    Returns
    -------
    train_loader
        DataLoader containing training examples, binary labels and true image classes
    test_loader
        DataLoader containing test examples, binary labels and true image classes
    '''
    
    # Generate pairs
    trainX, trainY, trainC, testX, testY, testC = prologue.generate_pair_sets(N, seed)
    
    # Retrieve mean and standard deviation of training set
    mu, std = trainX.mean(), trainX.std()
    
    # Standardize data
    trainX, testX = [standardize(x, mu, std) for x in [trainX, testX]]

    # Assemble all data
    train_data = TensorDataset(trainX, trainY, trainC)
    test_data = TensorDataset(testX, testY, testC)
    
    # Load data in DataLoader and shuffle training set
    torch.manual_seed(seed) # For reproducibility
    train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_data, batch_size=batch_size)
    return train_loader, test_loader
示例#15
0
def load_normal_data(n_samples):
    '''
    Load, normalize and flatten the dataset. 
    Params:
    n_samples 	: number of samples to be loaded
    Returns:
    train_X, train_Y, test_X, test_Y : the data required for train and test
    '''
    train_X, train_Y, train_Class, test_X, test_Y, test_Class = prologue.generate_pair_sets(
        n_samples)

    # normalize the data
    mu, std = train_X.mean(), train_X.std()
    train_X.sub_(mu).div_(std)
    test_X.sub_(mu).div_(std)

    # flatten the data
    train_X = train_X.view(train_X.size(0), -1)
    test_X = test_X.view(test_X.size(0), -1)

    return train_X, train_Y, test_X, test_Y
示例#16
0
    def generate_data(N=N, mode=mode):
        """
        Generates pair datasets and returns them as DataLoader classes
        :param N: number of samples in data
        :param mode: mode for data preprocessing (none, oversampling, undersampling)
        :return:
        """
        train_input, train_class, train_digit, test_input, test_class, test_digit = generate_pair_sets(N)

        # Normalising data
        mean = torch.mean(train_input)
        std = torch.std(train_input)
        train_input = (train_input - mean) / std
        test_input = (test_input - mean) / std

        # Balancing data
        if mode:
            train_input, train_class, train_digit = balance_data_classes(train_input, train_class, train_digit, mode)

        train_loader = DataLoader(list(zip(train_input, train_class, train_digit)), batch_size=64)
        test_loader = DataLoader(list(zip(test_input, test_class, test_digit)), batch_size=64)
        return train_loader, test_loader
示例#17
0
def test():
    N_PAIRS = 1000

    train_input, train_target, train_classes, test_input, test_target, test_classes = \
        prologue.generate_pair_sets(N_PAIRS)

    train_input, train_target = Variable(train_input), Variable(train_target)
    test_input, test_target = Variable(test_input), Variable(test_target)
    """ Create and train model """
    my_model = NetWithWeightSharing()
    """ Create and train model which identifies each number and then compares them """
    my_model.trainer(train_input, train_target)

    print("Train error : %.1f%% \nTest error : %.1f%%" %
          (my_model.nb_errors(train_input, train_target),
           my_model.nb_errors(test_input, test_target)))

    print("Train error : %.1f%% \nTest error : %.1f%%" %
          (my_model.nb_errors(train_input, train_target),
           my_model.nb_errors(test_input, test_target)))

    return my_model.nb_errors(test_input, test_target)
示例#18
0
def pipeline(net_class, name, rounds=2, epochs=25, mini_batch_size=50,
             lr=1e-3*0.5, auxiliary=False, **model_kwargs):
    """
    Full data generations, training, testing multiple times.

    For a given situation (mini-batch size, network, number of samples) does:
        * Data Generation
        * Model training (logging of losses)
        * Testing on training data (logging accuracy)
        * Testing on testing data (logging accuracy)
        * Printing results

    Parameters:
        net_class {nn.Module}: The class to train.
        rounds {int; default=10}: how many time the pipeline must be ran.
        epochs {int; default=25}: Number of epochs for the training.
        mini_batch_size {int; default=50}: size of the mini-batch.
            Must be a divisor of N.

    Returns:
        model: the model trained
        train_losses: List of training losses for each epoch.
            Shape: (rounds, num_epochs)
        train_errors: Mean errors per round (on a scale [0-1]) on train data.
            Shape: (rounds)
        test_errors: Mean errors per round (on a scale [0-1]) on test data.
            Shape: (rounds)
        rounds_times: Total time (data gen, training, testint) for each round.
            Shape: (rounds)
    """
    N = 1000
    train_losses = []
    train_errors, test_errors = [], []
    rounds_times = []
    print("********************* Training model '{}'*********************"
          .format(name))
    for i in range(rounds):
        print('Starting iteration {}'.format(i+1))
        time_start = time()
        # Generate Data
        (train_data, train_target, train_classes,
         test_data, test_target, test_classes) = prologue.generate_pair_sets(N)

        if auxiliary:
            # unpack the images to [2N, 1, 14, 14]
            train_data = train_data.view(-1, 1, 14, 14)
            train_classes = train_classes.view(-1)
            test_data = test_data.view(-1, 1, 14, 14)
            test_classes = test_classes.view(-1)

        # Model training
        time_train = time()
        model = net_class(auxiliary=auxiliary, **model_kwargs)
        train_epoch_losses = model.train_model(train_data,
                                               train_target,
                                               train_classes,
                                               nb_epochs=epochs,
                                               batch_size=mini_batch_size,
                                               lr=lr)
        train_losses.append(train_epoch_losses)

        # Compute train error
        time_train_errors = time()
        nb_train_errors = compute_nb_errors(model, train_data,
                                            train_target, mini_batch_size)
        train_errors.append(nb_train_errors/train_data.shape[0])

        # Compute train error
        time_test_errors = time()
        nb_test_errors = compute_nb_errors(model, test_data,
                                           test_target, mini_batch_size)
        test_errors.append(nb_test_errors/test_data.shape[0])

        time_end = time()
        rounds_times.append(time_end-time_start)
        # Logging
        print('Train error: {:0.2f}%'.format(
            100 * (nb_train_errors / train_data.size(0))))
        print('Test error: {:0.2f}%'
              .format(100 * (nb_test_errors / test_data.size(0))))
        print("Times:\n\
            Data generation: {:.2f}s\tTraining: {:.2f}\n\
            Errors compute train: {:.2f}s\tErrors compute test: {:.2f}s\n\
            Full round: {:.2f}s"
              .format(time_train-time_start,
                      time_train_errors-time_train,
                      time_test_errors-time_train_errors,
                      time_end-time_test_errors,
                      time_end-time_start))
        print("\n############\n")
    digest(train_errors, test_errors, rounds_times)
    print("******************* Ending training of '{}'*******************\n\n"
          .format(name))
    return model, train_losses, train_errors, test_errors, rounds_times
示例#19
0
###############################################################################
# - CONSTANTS - #
###############################################################################

#seed to retrieve the same results
t.manual_seed(0)

NB_PAIRS = 1000
NB_EPOCHS = args.epochs
MINI_BATCH_SIZE = 100
NB_RUN = args.runs

#fetch data
train_input,train_target,train_classes,test_input,test_target,test_classes \
= generate_pair_sets(NB_PAIRS)

#wrap both inputs so that the gradients can be computed
train_input = Variable(train_input.float(), requires_grad=True)
test_input = Variable(test_input.float(), requires_grad=True)

#convert string learning rate to float to be used by optimizer
lr_ = args.learning_rate

###############################################################################
# - NETWORKS - #
###############################################################################


# Baseline model that perform classification of a 14x14 MNIST image
# Output is of size 10x1, containing the 10 classes power
def load_data(N=1000, batch_size=50, seed=42):
    # Load data
    train_input, train_target, train_classes, test_input, test_target, test_classes = prologue.generate_pair_sets(
        N)

    # Convert target to one-hot label
    train_target = torch.nn.functional.one_hot(train_target)
    test_target = torch.nn.functional.one_hot(test_target)

    # Move data to the device
    train_input = train_input.to(device)
    train_target = train_target.to(device)
    train_classes = train_classes.to(device)
    test_input = test_input.to(device)
    test_target = test_target.to(device)
    test_classes = test_classes.to(device)

    # Normalize data
    mean, std = train_input.mean(), train_input.std()
    train_input.sub_(mean).div_(std)
    test_input.sub_(mean).div_(std)

    # Generate dataset
    train_data = TensorDataset(train_input, train_target, train_classes)
    test_data = TensorDataset(test_input, test_target, test_classes)

    # For reproducibility
    torch.manual_seed(seed)

    # Generate data loader
    train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
    test_loader = DataLoader(test_data, batch_size=batch_size)

    return train_loader, test_loader
示例#21
0
def get_data(N: int = 1000,
             batch_size: int = 100,
             shuffle: bool = True) -> tuple:
    """
    Get train and test DataLoaders of size N
    :param N: number of pairs to return for each data loader
    :param batch_size: batch size
    :param shuffle: activate random shuffling
    :return: train and test loader
    """

    # Get input tensors from provided prologue
    train_input, train_target, train_classes, test_input, test_target, test_classes = generate_pair_sets(
        N)
    device = get_device()

    # Normalization
    mu, std = train_input.mean(), train_input.std()
    train_input = train_input.sub(mu).div(std)
    test_input = test_input.sub(mu).div(std)

    # Move data to GPU if available
    train_input = train_input.to(device)
    train_target = train_target.to(device)
    train_classes = train_classes.to(device)
    test_input = test_input.to(device)
    test_target = test_target.to(device)
    test_classes = test_classes.to(device)

    # Create train and test loader
    train_loader = DataLoader(MNISTCompareDataset(train_input, train_target,
                                                  train_classes),
                              batch_size=batch_size,
                              shuffle=shuffle)

    test_loader = DataLoader(MNISTCompareDataset(test_input, test_target,
                                                 test_classes),
                             batch_size=batch_size,
                             shuffle=shuffle)

    return train_loader, test_loader
def perform_experiments(n_runs=10,
                        n_points=1000,
                        n_epochs=200,
                        run_best=False,
                        verbose=False):
    """
    Perform experiments for 5 different neural network architectures and losses.
    
    To run all experiments call this function with default params
    
    :param n_runs: number of runs for which experiment should be repeated
    :param n_points: number of training and testing data points used in the experiments
    :param n_epochs: number of epochs every architecture should be trained on
    :param run_best: If True only the best architecture (Siamese Network with auxiliary loss) is trained
    :param verbose: If True, print training and validation loss every epoch
    :returns: dictionary containing history of training (training, validation loss and accuracy)
    """
    history_mlp_net = []
    history_conv_net = []
    history_conv_net_aux = []
    history_siamese = []
    history_siamese_aux = []

    for n_run in range(n_runs):
        data_set = generate_pair_sets(n_points)
        MAX_VAL = 255.0

        TRAIN_INPUT = Variable(data_set[0]) / MAX_VAL
        TRAIN_TARGET = Variable(data_set[1])
        TRAIN_CLASSES = Variable(data_set[2])

        TEST_INPUT = Variable(data_set[3]) / MAX_VAL
        TEST_TARGET = Variable(data_set[4])
        TEST_CLASSES = Variable(data_set[5])

        if not run_best:
            ##############################################################################
            # Creates Multilayer Perceptron Network with ReLU activationss
            mlp_net = MLPNet(in_features=392,
                             out_features=2,
                             n_layers=3,
                             n_hidden=16)

            # Set train flag on (for dropouts)
            mlp_net.train()

            # Train the model and append the history
            history_mlp_net.append(
                train_model(mlp_net,
                            train_input=TRAIN_INPUT.view((n_points, -1)),
                            train_target=TRAIN_TARGET,
                            val_input=TEST_INPUT.view((n_points, -1)),
                            val_target=TEST_TARGET,
                            n_epochs=n_epochs,
                            verbose=verbose))

            # Set train flag to False for getting accuracies on validation data
            mlp_net.eval()
            acc = get_accuracy(mlp_net, TEST_INPUT.view(
                (n_points, -1)), TEST_TARGET) * 100.0
            print("Run: {}, Mlp_net Test Accuracy: {:.3f} %".format(
                n_run, acc))

            ##############################################################################
            # Create ConvNet without auxiliary outputs
            conv_net = ConvNet(n_classes=2, n_layers=3, n_features=16)

            # Set train flag on (for dropouts)
            conv_net.train()

            # Train the model and append the history
            history_conv_net.append(
                train_model(conv_net,
                            train_input=TRAIN_INPUT,
                            train_target=TRAIN_TARGET,
                            val_input=TEST_INPUT,
                            val_target=TEST_TARGET,
                            n_epochs=n_epochs,
                            verbose=verbose))

            # Set train flag to False for getting accuracies on validation data
            conv_net.eval()
            acc = get_accuracy(conv_net, TEST_INPUT, TEST_TARGET) * 100.0
            print("Run: {}, ConvNet Test Accuracy: {:.3f} %".format(
                n_run, acc))

            ##############################################################################
            # Create ConvNet with auxiliary outputs
            conv_net_aux = ConvNet(n_classes=22, n_layers=3, n_features=16)

            # Set train flag on (for dropouts)
            conv_net_aux.train()

            # Train the model and append the history
            history_conv_net_aux.append(
                train_model(conv_net_aux,
                            train_input=TRAIN_INPUT,
                            train_target=TRAIN_TARGET,
                            aux_param=1.0,
                            train_classes=TRAIN_CLASSES,
                            val_input=TEST_INPUT,
                            val_target=TEST_TARGET,
                            val_classes=TEST_CLASSES,
                            n_epochs=n_epochs,
                            verbose=verbose))

            # Set train flag to False for getting accuracies on validation data
            conv_net_aux.eval()
            acc = get_accuracy(conv_net_aux, TEST_INPUT, TEST_TARGET) * 100.0
            print("Run: {}, ConvNet Auxilary Test Accuracy: {:.3f} %".format(
                n_run, acc))

            ##############################################################################
            # Create Siamese Network without auxiliary outputs
            conv_net = BlockConvNet()
            conv_net_siamese = DeepSiameseNet(conv_net)

            # Set train flag on (for dropouts)
            conv_net.train()
            conv_net_siamese.train()

            # Train the model and append the history
            history_siamese.append(
                train_model(conv_net_siamese,
                            train_input=TRAIN_INPUT,
                            train_target=TRAIN_TARGET,
                            val_input=TEST_INPUT,
                            val_target=TEST_TARGET,
                            n_epochs=n_epochs,
                            verbose=verbose))

            # Set train flag to False for getting accuracies on validation data
            conv_net.eval()
            conv_net_siamese.eval()

            acc = get_accuracy(conv_net_siamese, TEST_INPUT,
                               TEST_TARGET) * 100.0
            print("Run: {}, Siamese Test Accuracy: {:.3f} %".format(
                n_run, acc))

        ##############################################################################
        # Create Siamese Network with auxiliary outputs
        conv_net = BlockConvNet()
        conv_net_siamese_aux = DeepSiameseNet(conv_net)

        # Set train flag on (for dropouts)
        conv_net.train()
        conv_net_siamese_aux.train()

        # Train the model and append the history
        history_siamese_aux.append(
            train_model(conv_net_siamese_aux,
                        train_input=TRAIN_INPUT,
                        train_target=TRAIN_TARGET,
                        train_classes=TRAIN_CLASSES,
                        val_input=TEST_INPUT,
                        val_target=TEST_TARGET,
                        val_classes=TEST_CLASSES,
                        aux_param=3.0,
                        n_epochs=n_epochs,
                        verbose=verbose))

        # Set train flag to False for getting accuracies on validation data
        conv_net.eval()
        conv_net_siamese_aux.eval()

        acc = get_accuracy(conv_net_siamese_aux, TEST_INPUT,
                           TEST_TARGET) * 100.0
        print("Run: {}, Siamese Auxilary Test Accuracy: {:.3f} %".format(
            n_run, acc))
        ##############################################################################

        return {
            'history_mlp_net': history_mlp_net,
            'history_conv_net': history_conv_net,
            'history_conv_net_aux': history_conv_net_aux,
            'history_siamese': history_siamese,
            'history_siamese_aux': history_siamese_aux
        }
示例#23
0
def benchmark_model(model,
                    train_function,
                    evaluate_function,
                    nb_trials=20,
                    N=1000,
                    mini_batch_size=250,
                    nb_epochs=25,
                    model_requires_target_and_classes=False,
                    _print=False):
    # Benchmark of the basic network with Adam optimizer
    performances = []
    for trial in range(nb_trials):

        # Generate Data
        train_input, train_target, train_classes, test_input, test_target, test_classes = prologue.generate_pair_sets(
            N)
        test_target_one_hot = prologue.convert_to_one_hot_labels(
            test_input, test_target)

        # Define the model
        model_total = model()

        # Train the model
        if model_requires_target_and_classes:
            train_function(model_total,
                           train_input,
                           train_target,
                           train_classes,
                           mini_batch_size=mini_batch_size,
                           nb_epochs=nb_epochs,
                           use_optimizer="adam",
                           _print=_print)
        else:
            train_function(model_total,
                           train_input,
                           train_target,
                           mini_batch_size=mini_batch_size,
                           nb_epochs=nb_epochs,
                           use_optimizer="adam",
                           _print=_print)

        # Evaluate performances
        nb_test_errors = evaluate_function(model_total,
                                           test_input,
                                           test_target_one_hot,
                                           mini_batch_size=mini_batch_size)
        print('test error Net trial {:d} {:0.2f}% {:d}/{:d}'.format(
            trial, (100 * nb_test_errors) / test_input.size(0), nb_test_errors,
            test_input.size(0)))
        performances.append(nb_test_errors)

    mean_perf = 100 * sum(performances) / (N * nb_trials)
    print(f"Average precision of this architecture {mean_perf}%")

    std_dev = math.sqrt(sum(list(map(lambda x: x - mean_perf,
                                     performances)))) / nb_trials
    print(f"With standard deviation of  {std_dev}")

    return performances
def test(model_maker,
         activation_fc=relu,
         mean=True,
         n_trials=5,
         device=None,
         output_file=None,
         lr=10e-3,
         nb_epochs=50,
         batch_size=250,
         infos='',
         auxiliary=False):
    """Function that test multiple times a given network on MNIST and save the results.

    Parameters
    ----------
    model_maker : function
        A function that returns a torch.nn.Module. This function should be able to accept arguments, even if not used.
    activation_fc : torch.nn.functional
        Activation function to be passed in model_maker (the default is relu).
    mean : bool
        If to compute the mean over multiple trials (the default is True).
    n_trials : int
        Number of times the model is to be tested, ignored if mean is False (the default is 5).
    device : torch.device
        The device to be used, by default is chosen according to computer resources (the default is None).
    output_file : str
        Name of the file where to save the results. If empty it prints on screen (the default is None).
    lr : double
        Learning rate (the default is 10e-3).
    nb_epochs : int
        Number of epochs (the default is 50).
    batch_size : int
        Batch size (the default is 100).
    infos : str
        Additional model infromations to be printed (the default is '').
    auxiliary : bool
        Wether to use auxiliary loss, it works only for siames net (the default is False).
    """

    if device is None:
        device = 'cuda' if torch.cuda.is_available() else 'cpu'

    if not mean:
        n_trials = 1

    CELoss_tr = []
    CELoss_te = []
    Accuracy_tr = []
    Accuracy_te = []
    time_tr = []

    model = model_maker(activation_fc)
    model_name = type(model).__name__ + infos

    if type(model).__name__ == 'SiameseNet' and auxiliary:
        model_name += 'Auxiliary'

    print('Training {}:'.format(model_name))

    ################################################################################
    # The model testing follows

    for trial in range(n_trials):
        input_train, target_train, classes_train, input_test, target_test, classes_test = generate_pair_sets(
            1000)

        criterion = torch.nn.CrossEntropyLoss()

        model = model_maker().to(device)

        criterion = criterion.to(device)

        optimizer = torch.optim.Adam(model.parameters(), lr)

        input_train, target_train = input_train.to(device), target_train.to(
            device)
        input_test, target_test = input_test.to(device), target_test.to(device)
        if auxiliary:
            classes_train, classes_test = classes_train.to(
                device), classes_test.to(device)

        ########################################################################
        #A model is trained for each trial

        start_time = time.time()

        for e in range(nb_epochs):
            for input, targets in zip(input_train.split(batch_size),
                                      target_train.split(batch_size)):

                if type(model).__name__ != 'SiameseNet' or not auxiliary:
                    #the standart training
                    optimizer.zero_grad()
                    output = model(input)
                    loss = criterion(output, targets)
                    loss.backward()
                    optimizer.step()
                else:
                    #first pass
                    #separating the data so that we train on the two images separatly, and learn to classify them properly
                    input_train1, classes_train1, input_train2, classes_train2 = split_channels(
                        input_train, classes_train)

                    #use the branch to perform handwritten digits classification
                    out1 = model.branch(input_train1)
                    out2 = model.branch(input_train2)

                    #auxiliary loss: learn to detect the handwritten digits directly
                    loss_aux = criterion(out1, classes_train1) + criterion(
                        out2, classes_train2)

                    #optimize based on this
                    model.zero_grad()
                    loss_aux.backward(retain_graph=True)
                    optimizer.step()

                    #second pass
                    #loss and optimization of the whole model
                    response = model.forward(input_train)
                    loss = criterion(response, target_train)
                    model.zero_grad()
                    loss.backward()
                    optimizer.step()

            with torch.no_grad():
                print('{:3}%| Trial {:>2}/{} - Iteration #{:>3}/{}:\t'.format(
                    int((trial * nb_epochs + e + 1) / n_trials / nb_epochs *
                        100), trial + 1, n_trials, e + 1, nb_epochs),
                      'Cross Entropy Loss on TRAIN :\t{:11.5}'.format(
                          criterion(model(input_train), target_train).item()),
                      end='\r')

        ########################################################################
        # model evaluation

        with torch.no_grad():
            elapsed_time = time.time() - start_time

            model.train(False)

            this_CELoss_tr = criterion(model(input_train), target_train).item()
            this_CELoss_te = criterion(model(input_test), target_test).item()
            this_Accuracy_tr = nn_accuracy_score(model, input_train,
                                                 target_train)
            this_Accuracy_te = nn_accuracy_score(model, input_test,
                                                 target_test)
            if not mean:
                print('Cross Entropy Loss on TRAIN :\t', this_CELoss_tr, '\n\
                Cross Entropy Loss on TEST :\t', this_CELoss_te, '\n\
                Accuracy score on TRAIN :\t', this_Accuracy_tr, '\n\
                Accuracy score on TEST :\t', this_Accuracy_te)

            CELoss_tr.append(this_CELoss_tr)
            CELoss_te.append(this_CELoss_te)
            Accuracy_tr.append(this_Accuracy_tr)
            Accuracy_te.append(this_Accuracy_te)
            time_tr.append(elapsed_time)

    with torch.no_grad():
        score_printing(CELoss_tr,
                       CELoss_te,
                       Accuracy_tr,
                       Accuracy_te,
                       time_tr,
                       model_name=model_name,
                       output=output_file)
    return
示例#25
0
# Import Pytorch Package
import torch
from torch import nn
from torch import optim
from torch.nn import functional as F
# Import Tool package
import dlc_practical_prologue as prologue
# Import the models and functions
from func import *
from models import *

# Load Data
N = 1000
train_input, train_target, train_classes, test_input, test_target, test_classes = prologue.generate_pair_sets(
    N)

# Set training parameters
inpDim = train_input.view(N, -1).size()[1]  # inpDim: Input dimension
nb_hidden1, nb_hidden2 = 160, 128  # nb_hidden1, nb_hidden2: Hidden dimensions
rounds = 15
mini_batch_size = 50

# Baseline Model
print("Train Baseline Model:")
print("--------------------------------------------------")
model1, loss_round_list1, train_errors_list1, test_errors_list1 = PipelineBase(
    BaselineNet, rounds, mini_batch_size, N)
estiPerform(train_errors_list1, test_errors_list1)
print("The parameters number of Baseline Model:",
      sum(p.numel() for p in model1.parameters()), '\n')
示例#26
0
import torch
import torch.optim as optim
from torch.autograd import Variable
from torch import nn
from torch.nn import functional as F
from torchvision import datasets, transforms
import matplotlib.pyplot as plt

import dlc_practical_prologue as dlc

train_input, train_target, train_classes, \
test_input, test_target, test_classes = dlc.generate_pair_sets(10)

for imageind in range(0, train_input.size(0)):
    plt.imshow(train_input[imageind][0].view(14, 14).numpy(), cmap="gray")
    plt.show()

for targetee in range(0, train_classes.size(0)):
    print(train_classes[targetee])

transform = transforms.Compose([
    transforms.ToTensor(),  # Convert each image into a torch.FloatTensor
    transforms.Normalize(
        (0.1307, ),
        (0.3081, ))  # Normalize the data to have zero mean and 1 stdv
])
train_set = datasets.MNIST('data',
                           train=True,
                           download=True,
                           transform=transform)
plt.imshow(train_set[2][0].view(28, 28).numpy(), cmap="gray")
示例#27
0
def main(isplot=False):
    """
    Main functoin
    - Load data
    - Create modeal
    - train and evaluate
    :return:
    """
    # ----- PARAMETER --------------------
    nb_pair = 1000
    batch_size = [100]
    nb_epochs = [100]
    learning_rate = [5e-3]
    nb_iteration = 10

    for ep in nb_epochs:
        for bs in batch_size:
            for lr in learning_rate:

                saved_train_accuracy = []
                saved_test_accuracy = []
                for i in range(nb_iteration):
                    print('\n------- ITERATION - %d -------' % (i + 1))

                    # ----- DATASET --------------------
                    train_input, train_target, _, test_input, test_target, _ = prologue.generate_pair_sets(
                        nb_pair)

                    # Normalize by dividing it to the max RGB value
                    train_input /= 255
                    test_input /= 255

                    # Split between training (80%) and validation (20%)
                    train_dataset = TensorDataset(train_input, train_target)
                    train_len = int(0.8 * train_dataset.__len__())
                    validation_len = train_dataset.__len__() - train_len
                    train_data, validation_data = random_split(
                        train_dataset, lengths=[train_len, validation_len])
                    train_loader = DataLoader(train_data,
                                              batch_size=bs,
                                              shuffle=False,
                                              num_workers=2)
                    validation_loader = DataLoader(validation_data,
                                                   batch_size=bs,
                                                   shuffle=False,
                                                   num_workers=2)

                    # Test
                    test_dataset = TensorDataset(test_input, test_target)
                    test_loader = DataLoader(test_dataset,
                                             batch_size=bs,
                                             shuffle=False,
                                             num_workers=2)

                    # ----- MODEL --------------------
                    # - Fully Connected model
                    model = FCModel()
                    # - Small cnn
                    # model = ConvModel()
                    # - Deeper cnn
                    # model = DeepConvModel()

                    # Optimizer
                    optimizer = optim.Adam(model.parameters(), lr=lr)

                    # Loss function
                    criterion = nn.CrossEntropyLoss()

                    # ----- TRAINING + VALIDATION --------------------
                    nb_batch_train = train_len // bs
                    nb_batch_validation = validation_len // bs
                    train_losses = []
                    train_accuracies = []
                    validation_losses = []
                    validation_accuracies = []

                    for epoch in range(ep):
                        # TRAIN
                        train_loss, train_accuracy = train(
                            train_loader, model, criterion, optimizer,
                            nb_batch_train)
                        train_losses.append(train_loss)
                        train_accuracies.append(train_accuracy)
                        # VALIDATION
                        validation_loss, validation_accuracy = validation(
                            validation_loader, model, criterion,
                            nb_batch_validation)
                        validation_losses.append(validation_loss)
                        validation_accuracies.append(validation_accuracy)

                        # Print progress
                        if (epoch + 1) % (ep / 10) == 0:
                            print(
                                'Epoch [%d/%d] --- TRAIN: Loss: %.4f - Accuracy: %d%% --- '
                                'VALIDATION: Loss: %.4f - Accuracy: %d%%' %
                                (epoch + 1, ep, train_loss, train_accuracy,
                                 validation_loss, validation_accuracy))

                    # ----- PLOT --------------------
                    if isplot:
                        plt.figure()
                        plt.subplot(1, 2, 1)
                        plt.plot(train_losses, label='Train loss')
                        plt.plot(validation_losses, label='Validation loss')
                        plt.ylabel('Loss')
                        plt.xlabel('Epoch')
                        plt.legend(frameon=False)
                        plt.subplot(1, 2, 2)
                        plt.plot(train_accuracies, label='Train accuracy')
                        plt.plot(validation_accuracies,
                                 label='Validation accuracy')
                        plt.ylabel('Accuracy')
                        plt.xlabel('Epoch')
                        plt.legend(frameon=False)

                    # ----- TEST --------------------
                    train_accuracy = test(train_loader, model)
                    saved_train_accuracy.append(train_accuracy)
                    test_accuracy = test(test_loader, model)
                    saved_test_accuracy.append(test_accuracy)

                    print('Accuracy on train set: %d %%' % train_accuracy)
                    print('Accuracy on test set: %d %%' % test_accuracy)

                # ----- MEAN + STD OVER ITERATION --------------------
                print('\n------- NB EPOCHS - %d -------' % ep)
                print('------- LEARNING RATE - %f -------' % lr)
                print('------- BATCH SIZE - %d -------' % bs)

                print(
                    'Mean train accuracy {:.02f} --- Std train accuracy {:.02f} '
                    '\nMean test accuracy {:.02f} --- Std test accuracy {:.02f}'
                    .format(
                        torch.FloatTensor(saved_train_accuracy).mean(),
                        torch.FloatTensor(saved_train_accuracy).std(),
                        torch.FloatTensor(saved_test_accuracy).mean(),
                        torch.FloatTensor(saved_test_accuracy).std()))
示例#28
0
def PipelineBase(Net, rounds=15, mini_batch_size=50, N=1000):
    """
    Use "mini_batch_size" to optimize step by step in "rounds" rounds.
    """
    loss_round_list = []
    train_errors_list, test_errors_list = [], []

    for k in range(rounds):
        # Generate Data
        train_input, train_target, train_classes, test_input, test_target, test_classes = prologue.generate_pair_sets(
            N)

        # Model training
        model = Net()
        loss_list = trainBaselineNet(model, train_input, train_target)
        loss_round_list.append(loss_list)

        # Predict and compute error
        nb_train_errors = errorsCompute(model, train_input, train_target)
        nb_test_errors = errorsCompute(model, test_input, test_target)
        train_errors_list.append(nb_train_errors / train_input.size(0))
        test_errors_list.append(nb_test_errors / test_input.size(0))

        # Logging
        print('Iteration ', k + 1)
        print("---------------------- Error ---------------------")
        print('Test error: {:0.2f}% {:d}/{:d}'.format(
            (100 * nb_test_errors) / test_input.size(0), nb_test_errors,
            test_input.size(0)))
        print('Train error: {:0.2f}% {:d}/{:d}'.format(
            (100 * nb_train_errors) / train_input.size(0), nb_train_errors,
            train_input.size(0)))
        print("--------------------------------------------------\n")
    return model, loss_round_list, train_errors_list, test_errors_list
示例#29
0
"""
Created on Wed Mar  6 10:36:43 2019

@author: Darcane
"""

from torch.autograd import Variable
import dlc_practical_prologue as prologue
from my_nets import *


""" Load Data """
N_PAIRS = 1000

train_input, train_target, train_classes, test_input, test_target, test_classes = \
    prologue.generate_pair_sets(N_PAIRS)

train_input, train_target = Variable(train_input), Variable(train_target)
test_input, test_target = Variable(test_input), Variable(test_target)

print(test_input.shape)
print(train_classes.size())
""" Create and train model """
my_model = NetWithWeightSharingAndAuxiliaryLoss()

""" Create and train model which identifies each number and then compares them """
my_model.trainer(train_input, train_target,train_classes)

print("Train error : %.1f%% \nTest error : %.1f%%" %
      (my_model.nb_errors(train_input, train_target),
       my_model.nb_errors(test_input, test_target)))
示例#30
0
def generate_data(normalization=True):
    # Generate data using prologue
    # param: normalization: To normalize the data or not
    # return: data needed for training and testing

    # Generate data using prologue
    train_input, train_target, train_classes, test_input, test_target, test_classes = prologue.generate_pair_sets(
        1000)

    # Normalize data if requested
    if normalization:
        mean, std = train_input.mean(), train_input.std()
        train_input.sub_(mean).div_(std)
        test_input.sub_(mean).div_(std)
        train_target = train_target.float()
        test_target = test_target.float()
    return train_input, train_target, train_classes, test_input, test_target, test_classes