def test_fast_rcnn_10(self): from dlpy.applications import Faster_RCNN model = Faster_RCNN(self.s, backbone='mobilenetv2', width=123, height=321) model.print_summary()
def test_fast_rcnn_2(self): from dlpy.applications import Faster_RCNN anchor_num_to_sample = 64 anchor_ratio = [2312312, 2, 2] anchor_scale = [1.2, 2.3, 3.4, 5.6] coord_type = 'rect' model = Faster_RCNN(self.s, model_table = 'fast', anchor_num_to_sample = anchor_num_to_sample, anchor_ratio = anchor_ratio, anchor_scale = anchor_scale, coord_type = coord_type) self.assertTrue(model.layers[20].config == self.sample_syntax['faster_rcnn1']) model.print_summary()
def test_fast_rcnn_9(self): from dlpy.applications import Faster_RCNN model = Faster_RCNN(self.s, backbone='mobilenetv1') model.print_summary()
def test_fast_rcnn_8(self): from dlpy.applications import Faster_RCNN model = Faster_RCNN(self.s, backbone='resnet34') model.print_summary()
def test_fast_rcnn_7(self): from dlpy.applications import Faster_RCNN model = Faster_RCNN(self.s, backbone='resnet18', number_of_neurons_in_fc=[1024, 1024]) model.print_summary()
def test_fast_rcnn(self): from dlpy.applications import Faster_RCNN model = Faster_RCNN(self.s) model.print_summary()