def test_get_set_input(): model_path = get_models(model_name='4in2out', arch=get_arch(), kind='tvm') device = 'cpu' model = DLRModel(model_path, device) input1 = np.asarray([1., 2.]) input2 = np.asarray([3., 4.]) input3 = np.asarray([5., 6., 7]) input4 = np.asarray([8., 9., 10]) model.run({'data1': input1, 'data2': input2, 'data3': input3, 'data4': input4}) assert np.array_equal(model.get_input('data1'), input1) assert np.array_equal(model.get_input('data2'), input2) assert np.array_equal(model.get_input('data3'), input3) assert np.array_equal(model.get_input('data4'), input4)
def test_assign_op(): model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assign_op') device = 'cpu' model = DLRModel(model_path, device) print('Testing _assign() operator...') # Example from https://github.com/dmlc/tvm/blob/bb87f044099ba61ba4782d17dd9127b869936373/nnvm/tests/python/compiler/test_top_assign.py np.random.seed(seed=0) input1 = np.random.random(size=(5, 3, 18, 18)) model.run({'w': input1}) input1_next = model.get_input('w2', shape=(5, 3, 18, 18)) assert np.allclose(input1_next, input1 + 2) model.run({}) input1_next = model.get_input('w2', shape=(5, 3, 18, 18)) assert np.allclose(input1_next, input1 + 3)
def test_mobilenet_v1_0_75_224_quant(): # Load the model model_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'mobilenet_v1_0.75_224_quant') device = 'cpu' model = DLRModel(model_path, device) # load image (dtype: uint8) image = np.load( os.path.join(os.path.dirname(os.path.abspath(__file__)), 'cat_224_uint8.npy')) print('Testing inference on mobilenet_v1_0.75_224_quant...') probabilities = model.run({'input': image}) assert probabilities[0].argmax() == 282 assert model.get_input_names() == ["input"] assert model.get_input_dtypes() == ["uint8"] assert model.get_output_dtypes() == ["uint8"] assert model.get_input_dtype(0) == "uint8" assert model.get_output_dtype(0) == "uint8" input2 = model.get_input("input") assert input2.dtype == 'uint8' assert input2.shape == (1, 224, 224, 3) assert (input2 == image).all()
def test_tf_model(dev_type=None, dev_id=None): _generate_frozen_graph() model = DLRModel(FROZEN_GRAPH_PATH, dev_type, dev_id) inp_names = model.get_input_names() assert inp_names == ['import/input1:0', 'import/input2:0'] out_names = model.get_output_names() assert out_names == [ 'import/preproc/output1:0', 'import/preproc/output2:0' ] inp1 = [[4., 1.], [3., 2.]] inp2 = [[0., 1.], [1., 0.]] res = model.run({'import/input1:0': inp1, 'import/input2:0': inp2}) assert res is not None assert len(res) == 2 assert np.alltrue(res[0] == [[36., 361.], [49., 324.]]) assert res[1] == 1 m_inp1 = model.get_input('import/input1:0') m_inp2 = model.get_input('import/input2:0') assert np.alltrue(m_inp1 == inp1) assert np.alltrue(m_inp2 == inp2)
def test_tflite_model(): _generate_tflite_file() m = DLRModel(TFLITE_FILE_PATH) inp_names = m.get_input_names() assert sorted(inp_names) == ['input1', 'input2'] out_names = m.get_output_names() assert sorted(out_names) == ['preproc/output1', 'preproc/output2'] inp1 = np.array([[4., 1.], [3., 2.]]).astype("float32") inp2 = np.array([[0., 1.], [1., 0.]]).astype("float32") res = m.run({'input1': inp1, 'input2': inp2}) assert res is not None assert len(res) == 2 exp_out0 = np.array([[36., 361.], [49., 324.]]).astype("float32") assert np.alltrue(res[0] == exp_out0) assert res[1] == 1 m_inp1 = m.get_input('input1') m_inp2 = m.get_input('input2') assert np.alltrue(m_inp1 == inp1) assert np.alltrue(m_inp2 == inp2)