示例#1
0
def upsample_and_concat(inputs, inputs2, strides=(2, 2, 2)):
    """Upsampling and concatenation layer according to [1].

    [1] O. Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image
        Segmentation. MICCAI 2015.

    Args:
        inputs (TYPE): Input features to be upsampled.
        inputs2 (TYPE): Higher resolution features from the encoder to
            concatenate.
        strides (tuple, optional): Upsampling factor for a strided transpose
            convolution.

    Returns:
        tf.Tensor: Upsampled feature tensor
    """
    assert len(inputs.get_shape().as_list()) == 5, \
        'inputs are required to have a rank of 5.'
    # assert len(inputs.get_shape().as_list()) == len(inputs2.get_shape().as_list()), \
    #     'Ranks of input and input2 differ'

    # Upsample inputs
    inputs = linear_upsample_3d(inputs, strides)

    return tf.concat(axis=-1, values=[inputs2, inputs])
def upsample(inputs, strides=(2, 2, 2)):
    assert len(inputs.get_shape().as_list()) == 5, \
        'inputs are required to have a rank of 5.'

    # Upsample inputs
    inputs = linear_upsample_3d(inputs, strides)

    return inputs
示例#3
0
    def _upsample(x, factor):
        if isinstance(factor, int):
            factor = [factor] * (len(x.get_shape().as_list()) - 2)

        # TODO: build repeat upsampling

        x = linear_upsample_3d(x, strides=factor)
        return x
    def _upsample(x, factor):
        if isinstance(factor, int):
            factor = [factor] * (len(x.get_shape().as_list()) - 2)

        # TODO: build repeat upsampling

        x = linear_upsample_3d(x, strides=factor)
        return x
def upsample_and_concat(inputs, inputs2, strides=(2, 2, 2)):
    assert len(inputs.get_shape().as_list()) == 5, \
        'inputs are required to have a rank of 5.'
    assert len(inputs.get_shape().as_list()) == len(inputs2.get_shape().as_list()), \
        'Ranks of input and input2 differ'

    # Upsample inputs
    inputs1 = linear_upsample_3d(inputs, strides)

    return tf.concat(axis=-1, values=[inputs2, inputs1])
def upsample_and_concat_with_conv(inputs,
                                  inputs2,
                                  strides=(2, 2, 2),
                                  mode=tf.estimator.ModeKeys.EVAL,
                                  conv_params=global_conv_params):
    """Upsampling and concatenation layer according to [1].

    [1] O. Ronneberger et al. U-Net: Convolutional Networks for Biomedical Image
        Segmentation. MICCAI 2015.

    Args:
        inputs (TYPE): Input features to be upsampled.
        inputs2 (TYPE): Higher resolution features from the encoder to
            concatenate.
        strides (tuple, optional): Upsampling factor for a strided transpose
            convolution.

    Returns:
        tf.Tensor: Upsampled feature tensor
    """
    assert len(inputs.get_shape().as_list()) == 5, \
        'inputs are required to have a rank of 5.'
    assert len(inputs.get_shape().as_list()) == len(inputs2.get_shape().as_list()), \
        'Ranks of input and input2 differ'

    # Upsample inputs
    inputs1 = linear_upsample_3d(inputs, strides)

    with tf.variable_scope('reduce_channel_unit'):
        result = tf.concat(axis=-1, values=[inputs2, inputs1])
        result = tf.layers.batch_normalization(
            result, training=mode == tf.estimator.ModeKeys.TRAIN)
        result = leaky_relu(result)

        result = tf.layers.conv3d(inputs=result,
                                  filters=inputs2.shape[-1],
                                  kernel_size=(3, 3, 3),
                                  strides=(1, 1, 1),
                                  **conv_params)

    return result
def upsample_and_conv(inputs,
                      strides=(2, 2, 2),
                      mode=tf.estimator.ModeKeys.EVAL,
                      conv_params=global_conv_params,
                      name=None):
    assert len(inputs.get_shape().as_list()) == 5, \
        'inputs are required to have a rank of 5.'

    # Upsample inputs
    with tf.variable_scope('reduce_channel_unit_{}'.format(name)):
        inputs1 = linear_upsample_3d(inputs, strides)

        result = tf.layers.batch_normalization(
            inputs1, training=mode == tf.estimator.ModeKeys.TRAIN)
        result = leaky_relu(result)

        result = tf.layers.conv3d(inputs=result,
                                  filters=inputs.get_shape().as_list()[-1] / 2,
                                  kernel_size=(3, 3, 3),
                                  strides=(1, 1, 1),
                                  **conv_params)

    return result
示例#8
0
def upscore_layer_3d(inputs,
                     inputs2,
                     out_filters,
                     in_filters=None,
                     strides=(2, 2, 2),
                     mode=tf.estimator.ModeKeys.EVAL, use_bias=False,
                     kernel_initializer=tf.initializers.variance_scaling(distribution='uniform'),
                     bias_initializer=tf.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None):
    """Upscore layer according to [1].

    [1] J. Long et al. Fully convolutional networks for semantic segmentation.
    CVPR 2015.

    Args:
        inputs (tf.Tensor): Input features to be upscored.
        inputs2 (tf.Tensor): Higher resolution features from the encoder to add.
            out_filters (int): Number of output filters (typically, number of
            segmentation classes)
        in_filters (None, optional): None or number of input filters.
        strides (tuple, optional): Upsampling factor for a strided transpose
            convolution.
        mode (TYPE, optional): One of the tf.estimator.ModeKeys strings: TRAIN,
            EVAL or PREDICT
        use_bias (bool, optional): Boolean, whether the layer uses a bias.
        kernel_initializer (TYPE, optional): An initializer for the convolution
            kernel.
        bias_initializer (TYPE, optional): An initializer for the bias vector.
            If None, no bias will be applied.
        kernel_regularizer (None, optional): Optional regularizer for the
            convolution kernel.
        bias_regularizer (None, optional): Optional regularizer for the bias
            vector.

    Returns:
        tf.Tensor: Upscore tensor

    """
    conv_params = {'use_bias': use_bias,
                   'kernel_initializer': kernel_initializer,
                   'bias_initializer': bias_initializer,
                   'kernel_regularizer': kernel_regularizer,
                   'bias_regularizer': bias_regularizer}

    # Compute an upsampling shape dynamically from the input tensor. Input
    # filters are required to be static.
    if in_filters is None:
        in_filters = inputs.get_shape().as_list()[-1]

    assert len(inputs.get_shape().as_list()) == 5, \
        'inputs are required to have a rank of 5.'
    assert len(inputs.get_shape().as_list()) == len(inputs2.get_shape().as_list()), \
        'Ranks of input and input2 differ'

    # Account for differences in the number of input and output filters
    if in_filters != out_filters:
        x = tf.layers.conv3d(inputs=inputs,
                             filters=out_filters,
                             kernel_size=(1, 1, 1),
                             strides=(1, 1, 1),
                             padding='same',
                             name='filter_conversion',
                             **conv_params)
    else:
        x = inputs

    # Upsample inputs
    x = linear_upsample_3d(inputs=x, strides=strides)

    # Skip connection
    x2 = tf.layers.conv3d(inputs=inputs2,
                          filters=out_filters,
                          kernel_size=(1, 1, 1),
                          strides=(1, 1, 1),
                          padding='same',
                          **conv_params)

    x2 = tf.layers.batch_normalization(
        x2, training=mode == tf.estimator.ModeKeys.TRAIN)

    # Return the element-wise sum
    return tf.add(x, x2)
示例#9
0
def model_fn(features, labels, mode, params):
    """Model function to construct a tf.estimator.EstimatorSpec. It creates a
        network given input features (e.g. from a dltk.io.abstract_reader) and
        training targets (labels). Further, loss, optimiser, evaluation ops and
        custom tensorboard summary ops can be added. For additional information,
        please refer to https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#model_fn.
    Args:
        features (tf.Tensor): Tensor of input features to train from. Required
            rank and dimensions are determined by the subsequent ops
            (i.e. the network).
        labels (tf.Tensor): Tensor of training targets or labels. Required rank
            and dimensions are determined by the network output.
        mode (str): One of the tf.estimator.ModeKeys: TRAIN, EVAL or PREDICT
        params (dict, optional): A dictionary to parameterise the model_fn
            (e.g. learning_rate)
    Returns:
        tf.estimator.EstimatorSpec: A custom EstimatorSpec for this experiment
    """

    assert len(params['upsampling_factor']) == 3

    # During training downsample the original input to create a lower resolution
    #  image
    if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
        lo_res = tf.layers.average_pooling3d(
            inputs=features['x'],
            pool_size=[
                2 * s if s > 1 else 1 for s in params['upsampling_factor']
            ],
            strides=params['upsampling_factor'],
            padding='same',
            name='training_downsample')

        # Compute some linear upsampling for comparison:
        lin_up = linear_upsample_3d(inputs=lo_res,
                                    strides=params['upsampling_factor'])
    else:
        lo_res = features['x']

    # 1. create a model and its outputs
    net_output_ops = simple_super_resolution_3d(
        inputs=lo_res,
        num_convolutions=2,
        upsampling_factor=params['upsampling_factor'],
        filters=(16, 32, 64, 128),
        mode=mode)

    # 1.1 Generate predictions only (for `ModeKeys.PREDICT`)
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(
            mode=mode,
            predictions=net_output_ops,
            export_outputs={
                'out': tf.estimator.export.PredictOutput(net_output_ops)
            })

    # 2. set up a loss function
    loss = tf.losses.mean_squared_error(labels=features['x'],
                                        predictions=net_output_ops['x_'])

    # 3. define a training op and ops for updating moving averages
    # (i.e. for batch normalisation)
    global_step = tf.train.get_global_step()
    optimiser = tf.train.AdamOptimizer(learning_rate=params['learning_rate'],
                                       epsilon=1e-5)

    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        train_op = optimiser.minimize(loss, global_step=global_step)

    # 4.1 (optional) create custom image summaries for tensorboard
    tf.summary.image('feat_lo_res',
                     tf.reshape(lo_res[0, 4, :, :, 0:1], [1, 32, 32, 1]))

    my_image_summaries = {}
    my_image_summaries['feat_hi_res'] = features['x'][0, 16, :, :, 0:1]
    my_image_summaries['linear_up_hi_res'] = tf.cast(lin_up,
                                                     tf.float32)[0, 16, :, :,
                                                                 0:1]
    my_image_summaries['pred_hi_res'] = tf.cast(net_output_ops['x_'],
                                                tf.float32)[0, 16, :, :, 0:1]

    expected_output_size = [1, 128, 128, 1]  # [B, W, H, C]
    [
        tf.summary.image(name, tf.reshape(image, expected_output_size))
        for name, image in my_image_summaries.items()
    ]

    # 5. Return EstimatorSpec object
    return tf.estimator.EstimatorSpec(mode=mode,
                                      predictions=net_output_ops,
                                      loss=loss,
                                      train_op=train_op,
                                      eval_metric_ops=None)
示例#10
0
文件: train.py 项目: Mulugeta/DLTK
def model_fn(features, labels, mode, params):
    """Model function to construct a tf.estimator.EstimatorSpec. It creates a
        network given input features (e.g. from a dltk.io.abstract_reader) and
        training targets (labels). Further, loss, optimiser, evaluation ops and
        custom tensorboard summary ops can be added. For additional information,
        please refer to https://www.tensorflow.org/api_docs/python/tf/estimator/Estimator#model_fn.

    Args:
        features (tf.Tensor): Tensor of input features to train from. Required
            rank and dimensions are determined by the subsequent ops
            (i.e. the network).
        labels (tf.Tensor): Tensor of training targets or labels. Required rank
            and dimensions are determined by the network output.
        mode (str): One of the tf.estimator.ModeKeys: TRAIN, EVAL or PREDICT
        params (dict, optional): A dictionary to parameterise the model_fn
            (e.g. learning_rate)

    Returns:
        tf.estimator.EstimatorSpec: A custom EstimatorSpec for this experiment
    """

    assert len(params['upsampling_factor']) == 3

    # During training downsample the original input to create a lower resolution
    #  image
    if mode == tf.estimator.ModeKeys.TRAIN or mode == tf.estimator.ModeKeys.EVAL:
        lo_res = tf.layers.average_pooling3d(
            inputs=features['x'],
            pool_size=[2 * s if s > 1 else 1 for s in params['upsampling_factor']],
            strides=params['upsampling_factor'],
            padding='same',
            name='training_downsample')

        # Compute some linear upsampling for comparison:
        lin_up = linear_upsample_3d(inputs=lo_res,
                                    strides=params['upsampling_factor'])
    else:
        lo_res = features['x']

    # 1. create a model and its outputs
    net_output_ops = simple_super_resolution_3d(
        inputs=lo_res,
        num_convolutions=2,
        upsampling_factor=params['upsampling_factor'],
        filters=(16, 32, 64, 128),
        mode=mode)

    # 1.1 Generate predictions only (for `ModeKeys.PREDICT`)
    if mode == tf.estimator.ModeKeys.PREDICT:
        return tf.estimator.EstimatorSpec(
            mode=mode,
            predictions=net_output_ops,
            export_outputs={'out': tf.estimator.export.PredictOutput(net_output_ops)})

    # 2. set up a loss function
    loss = tf.losses.mean_squared_error(
        labels=features['x'],
        predictions=net_output_ops['x_'])

    # 3. define a training op and ops for updating moving averages
    # (i.e. for batch normalisation)
    global_step = tf.train.get_global_step()
    optimiser = tf.train.AdamOptimizer(
        learning_rate=params['learning_rate'],
        epsilon=1e-5)

    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
        train_op = optimiser.minimize(loss, global_step=global_step)

    # 4.1 (optional) create custom image summaries for tensorboard
    tf.summary.image('feat_lo_res', tf.reshape(lo_res[0, 4, :, :, 0:1], [1, 32, 32, 1]))

    my_image_summaries = {}
    my_image_summaries['feat_hi_res'] = features['x'][0, 16, :, :, 0:1]
    my_image_summaries['linear_up_hi_res'] = tf.cast(lin_up, tf.float32)[0, 16, :, :, 0:1]
    my_image_summaries['pred_hi_res'] = tf.cast(net_output_ops['x_'], tf.float32)[0, 16, :, :, 0:1]

    expected_output_size = [1, 128, 128, 1]  # [B, W, H, C]
    [tf.summary.image(name, tf.reshape(image, expected_output_size))
     for name, image in my_image_summaries.items()]

    # 5. Return EstimatorSpec object
    return tf.estimator.EstimatorSpec(mode=mode,
                                      predictions=net_output_ops,
                                      loss=loss,
                                      train_op=train_op,
                                      eval_metric_ops=None)
示例#11
0
def dcgan_generator_3d(inputs,
                       filters=(256, 128, 64, 32, 1),
                       kernel_size=((4, 4, 4), (3, 3, 3), (3, 3, 3), (3, 3, 3),
                                    (4, 4, 4)),
                       strides=((4, 4, 4), (1, 2, 2), (1, 2, 2), (1, 2, 2),
                                (1, 2, 2)),
                       mode=tf.estimator.ModeKeys.TRAIN,
                       use_bias=False):
    """
    Deep convolutional generative adversial network (DCGAN) generator
    network. with num_convolutions on len(filters) resolution scales. The
    upsampling of features is done via strided transpose convolutions. On
    each resolution scale s are num_convolutions with filter size = filters[
    s]. strides[s] determine the upsampling factor at each resolution scale.

    Args:
        inputs (tf.Tensor): Input noise tensor to the network.
        out_filters (int): Number of output filters.
        num_convolutions (int, optional): Number of convolutions per resolution
            scale.
        filters (tuple, optional): Number of filters for all convolutions at
            each resolution scale.
        strides (tuple, optional): Stride of the first convolution on a
            resolution scale.
        mode (TYPE, optional): One of the tf.estimator.ModeKeys strings: TRAIN,
            EVAL or PREDICT
        use_bias (bool, optional): Boolean, whether the layer uses a bias.

    Returns:
        dict: dictionary of output tensors

    """
    outputs = {}
    assert len(strides) == len(filters)
    assert len(inputs.get_shape().as_list()) == 5, \
        'inputs are required to have a rank of 5.'

    conv_op = tf.layers.conv3d

    conv_params = {
        'padding': 'same',
        'use_bias': use_bias,
        'kernel_initializer': tf.uniform_unit_scaling_initializer(),
        'bias_initializer': tf.zeros_initializer(),
        'kernel_regularizer': None,
        'bias_regularizer': None
    }

    x = inputs
    tf.logging.info('Input tensor shape {}'.format(x.get_shape()))

    for res_scale in range(0, len(filters)):
        with tf.variable_scope('gen_unit_{}'.format(res_scale)):

            tf.logging.info('Generator at res_scale before up {} tensor '
                            'shape: {}'.format(res_scale, x.get_shape()))

            x = linear_upsample_3d(x, strides[res_scale], trainable=True)

            x = conv_op(inputs=x,
                        filters=filters[res_scale],
                        kernel_size=kernel_size[res_scale],
                        **conv_params)

            tf.logging.info('Generator at res_scale after up {} tensor '
                            'shape: {}'.format(res_scale, x.get_shape()))

            x = tf.layers.batch_normalization(
                x, training=mode == tf.estimator.ModeKeys.TRAIN)

            x = leaky_relu(x, 0.2)
            tf.logging.info('Generator at res_scale {} tensor shape: '
                            '{}'.format(res_scale, x.get_shape()))

    outputs['gen'] = x

    return outputs
示例#12
0
文件: fcn.py 项目: Mulugeta/DLTK
def upscore_layer_3d(inputs,
                     inputs2,
                     out_filters,
                     in_filters=None,
                     strides=(2, 2, 2),
                     mode=tf.estimator.ModeKeys.EVAL,
                     use_bias=False,
                     kernel_initializer=tf.initializers.variance_scaling(distribution='uniform'),
                     bias_initializer=tf.zeros_initializer(),
                     kernel_regularizer=None,
                     bias_regularizer=None):
    """Upscore layer according to [1].

    [1] J. Long et al. Fully convolutional networks for semantic segmentation.
    CVPR 2015.

    Args:
        inputs (tf.Tensor): Input features to be upscored.
        inputs2 (tf.Tensor): Higher resolution features from the encoder to add.
            out_filters (int): Number of output filters (typically, number of
            segmentation classes)
        in_filters (None, optional): None or number of input filters.
        strides (tuple, optional): Upsampling factor for a strided transpose
            convolution.
        mode (TYPE, optional): One of the tf.estimator.ModeKeys strings: TRAIN,
            EVAL or PREDICT
        use_bias (bool, optional): Boolean, whether the layer uses a bias.
        kernel_initializer (TYPE, optional): An initializer for the convolution
            kernel.
        bias_initializer (TYPE, optional): An initializer for the bias vector.
            If None, no bias will be applied.
        kernel_regularizer (None, optional): Optional regularizer for the
            convolution kernel.
        bias_regularizer (None, optional): Optional regularizer for the bias
            vector.

    Returns:
        tf.Tensor: Upscore tensor

    """
    conv_params = {'use_bias': use_bias,
                   'kernel_initializer': kernel_initializer,
                   'bias_initializer': bias_initializer,
                   'kernel_regularizer': kernel_regularizer,
                   'bias_regularizer': bias_regularizer}

    # Compute an upsampling shape dynamically from the input tensor. Input
    # filters are required to be static.
    if in_filters is None:
        in_filters = inputs.get_shape().as_list()[-1]

    assert len(inputs.get_shape().as_list()) == 5, \
        'inputs are required to have a rank of 5.'
    assert len(inputs.get_shape().as_list()) == len(inputs2.get_shape().as_list()), \
        'Ranks of input and input2 differ'

    # Account for differences in the number of input and output filters
    if in_filters != out_filters:
        x = tf.layers.conv3d(inputs=inputs,
                             filters=out_filters,
                             kernel_size=(1, 1, 1),
                             strides=(1, 1, 1),
                             padding='same',
                             name='filter_conversion',
                             **conv_params)
    else:
        x = inputs

    # Upsample inputs
    x = linear_upsample_3d(inputs=x, strides=strides)

    # Skip connection
    x2 = tf.layers.conv3d(inputs=inputs2,
                          filters=out_filters,
                          kernel_size=(1, 1, 1),
                          strides=(1, 1, 1),
                          padding='same',
                          **conv_params)

    x2 = tf.layers.batch_normalization(
        x2, training=mode == tf.estimator.ModeKeys.TRAIN)

    # Return the element-wise sum
    return tf.add(x, x2)