def initialize_episode(self, physics, random_state):
    self._walker.reinitialize_pose(physics, random_state)
    if self._walker_spawn_rotation:
      rotation = variation.evaluate(
          self._walker_spawn_rotation, random_state=random_state)
      quat = [np.cos(rotation / 2), 0, 0, np.sin(rotation / 2)]
    else:
      quat = None
    walker_x, walker_y = variation.evaluate(
        self._walker_spawn_position, random_state=random_state)
    self._walker.shift_pose(
        physics,
        position=[walker_x, walker_y, 0.],
        quaternion=quat,
        rotate_velocity=True)

    self._failure_termination = False
    walker_foot_geoms = set(self._walker.ground_contact_geoms)
    walker_nonfoot_geoms = [
        geom for geom in self._walker.mjcf_model.find_all('geom')
        if geom not in walker_foot_geoms]
    self._walker_nonfoot_geomids = set(
        physics.bind(walker_nonfoot_geoms).element_id)
    self._ground_geomids = set(
        physics.bind(self._arena.ground_geoms).element_id)
    self._ground_geomids.add(physics.bind(self._target).element_id)
示例#2
0
 def __call__(self, proto, random_state=None):
   for prop in proto.props:
     size_value = variation.evaluate(self._size_variation,
                                     random_state=random_state)
     if not np.shape(size_value):
       size_value = np.full(len(prop.size), size_value)
     for i in range(len(prop.size)):
       prop.size[i] = self._size_op(prop.size[i], size_value[i])
     prop.mass = variation.evaluate(self._mass, random_state=random_state)
示例#3
0
 def test_binary_operator(self, name):
     func = getattr(operator, name)
     self.assertEqual(
         variation.evaluate(func(self.value_1, self.variation_2)),
         func(self.value_1, self.value_2))
     self.assertEqual(
         variation.evaluate(func(self.variation_1, self.value_2)),
         func(self.value_1, self.value_2))
     self.assertEqual(
         variation.evaluate(func(self.variation_1, self.variation_2)),
         func(self.value_1, self.value_2))
示例#4
0
 def __call__(self, initial_value=None, current_value=None, random_state=None):
   local_random_state = random_state or np.random
   size = (None if self._single_sample or initial_value is None  # pylint: disable=g-long-ternary
           else np.shape(initial_value))
   local_args = variation.evaluate(self._args,
                                   initial_value=initial_value,
                                   current_value=current_value,
                                   random_state=random_state)
   local_kwargs = variation.evaluate(self._kwargs,
                                     initial_value=initial_value,
                                     current_value=current_value,
                                     random_state=random_state)
   return self._callable(local_random_state)(*local_args,
                                             size=size,
                                             **local_kwargs)
示例#5
0
    def after_step(self, physics, random_state):
        self._failure_termination = False
        for contact in physics.data.contact:
            if self._is_disallowed_contact(contact):
                self._failure_termination = True
                break
        if (self._moving_target and
                self._reward_step_counter >= self._steps_before_moving_target):

            # Reset the target position.
            if self._target_relative:
                walker_pos = physics.bind(self._walker.root_body).xpos[:2]
                target_x, target_y = random_state.uniform(
                    -np.array([
                        self._target_relative_dist, self._target_relative_dist
                    ]),
                    np.array([
                        self._target_relative_dist, self._target_relative_dist
                    ]))
                target_x += walker_pos[0]
                target_y += walker_pos[1]
            else:
                target_x, target_y = variation.evaluate(
                    self._target_spawn_position, random_state=random_state)
            physics.bind(self._target).pos = [target_x, target_y, 0.]

            # Reset the number of steps at the target for the moving target.
            self._reward_step_counter = 0
示例#6
0
    def __call__(self, physics, random_state):
        """Sets initial tool center point pose via inverse kinematics.

    Args:
      physics: An `mjcf.Physics` instance.
      random_state: An `np.random.RandomState` instance.

    Raises:
      RuntimeError: If a collision-free pose could not be found within
        `max_ik_attempts`.
    """
        if self._hand is not None:
            target_site = self._hand.tool_center_point
        else:
            target_site = self._arm.wrist_site

        initial_qpos = physics.bind(self._arm.joints).qpos.copy()

        for _ in range(self._max_rejection_samples):
            target_pos = variation.evaluate(self._position,
                                            random_state=random_state)
            target_quat = variation.evaluate(self._quaternion,
                                             random_state=random_state)
            success = self._arm.set_site_to_xpos(
                physics=physics,
                random_state=random_state,
                site=target_site,
                target_pos=target_pos,
                target_quat=target_quat,
                max_ik_attempts=self._max_ik_attempts)

            if success:
                physics.forward()  # Recalculate contacts.
                if (self._ignore_collisions
                        or not self._has_relevant_collisions(physics)):
                    return

            # If IK failed to find a solution for this target pose, or if the solution
            # resulted in contacts, then reset the arm joints to their original
            # positions and try again with a new target.
            physics.bind(self._arm.joints).qpos = initial_qpos

        raise RuntimeError(
            _REJECTION_SAMPLING_FAILED.format(
                max_rejection_samples=self._max_rejection_samples,
                max_ik_attempts=self._max_ik_attempts))
示例#7
0
    def regenerate(self, random_state):
        """Regenerates this corridor.

    New values are drawn from the `corridor_width` and `corridor_height`
    distributions specified in `_build`. The corridor is resized accordingly.

    Args:
      random_state: A `numpy.random.RandomState` object that is passed to the
        `Variation` objects.
    """
        self._walls_body.geom.clear()
        corridor_width = variation.evaluate(self._corridor_width,
                                            random_state=random_state)
        corridor_length = variation.evaluate(self._corridor_length,
                                             random_state=random_state)
        self._current_corridor_length = corridor_length
        self._current_corridor_width = corridor_width

        self._ground_plane.pos = [corridor_length / 2, 0, 0]
        self._ground_plane.size = [
            corridor_length / 2 + _CORRIDOR_X_PADDING, corridor_width / 2, 1
        ]

        self._left_plane.pos = [
            corridor_length / 2, corridor_width / 2, _SIDE_WALL_HEIGHT / 2
        ]
        self._left_plane.size = [
            corridor_length / 2 + _CORRIDOR_X_PADDING, _SIDE_WALL_HEIGHT / 2, 1
        ]

        self._right_plane.pos = [
            corridor_length / 2, -corridor_width / 2, _SIDE_WALL_HEIGHT / 2
        ]
        self._right_plane.size = [
            corridor_length / 2 + _CORRIDOR_X_PADDING, _SIDE_WALL_HEIGHT / 2, 1
        ]

        self._near_plane.pos = [-_CORRIDOR_X_PADDING, 0, _SIDE_WALL_HEIGHT / 2]
        self._near_plane.size = [corridor_width / 2, _SIDE_WALL_HEIGHT / 2, 1]

        self._far_plane.pos = [
            corridor_length + _CORRIDOR_X_PADDING, 0, _SIDE_WALL_HEIGHT / 2
        ]
        self._far_plane.size = [corridor_width / 2, _SIDE_WALL_HEIGHT / 2, 1]
示例#8
0
def _build_stack(physics, bricks, base_pos, base_quat, order, random_state):
    """Builds a stack of bricks.

  Args:
    physics: Instance of `mjcf.Physics`.
    bricks: Sequence of `composer.Entity` instances corresponding to bricks.
    base_pos: Position of the base brick in the stack; either a (3,) numpy array
      or a `variation.Variation` that yields such arrays.
    base_quat: Quaternion of the base brick in the stack; either a (4,) numpy
      array or a `variation.Variation` that yields such arrays.
    order: Sequence of indices specifying the order in which to stack the
      bricks.
    random_state: An `np.random.RandomState` instance.
  """
    base_pos = variation.evaluate(base_pos, random_state=random_state)
    base_quat = variation.evaluate(base_quat, random_state=random_state)
    bricks[order[0]].set_pose(physics, position=base_pos, quaternion=base_quat)
    for bottom_idx, top_idx in zip(order[:-1], order[1:]):
        bottom = bricks[bottom_idx]
        top = bricks[top_idx]
        stud_pos = physics.bind(bottom.studs[0, 0]).xpos
        _, quat = bottom.get_pose(physics)
        # The reward function treats top left -> top left and top left -> bottom
        # right configurations as identical, so the orientations of the bricks are
        # randomized so that 50% of the time the top brick is rotated 180 degrees
        # relative to the brick below.
        if random_state.rand() < 0.5:
            quat = quat.copy()
            axis = np.array([0., 0., 1.])
            angle = np.pi
            mjlib.mju_quatIntegrate(quat, axis, angle)
            hole_idx = (-1, -1)
        else:
            hole_idx = (0, 0)
        top.set_pose(physics, quaternion=quat)

        # Set the position of the top brick so that its holes line up with the studs
        # of the brick below.
        offset = physics.bind(top.holes[hole_idx]).xpos
        top_pos = stud_pos - offset
        top.set_pose(physics, position=top_pos)
示例#9
0
  def initialize_episode(self, physics, random_state):
    self._ground_geomid = physics.bind(
        self._arena.mjcf_model.worldbody.geom[0]).element_id
    self._feet_geomids = set(physics.bind(self._feet_geoms).element_id)
    self._lhand_geomids = set(physics.bind(self._lhand_geoms).element_id)
    self._rhand_geomids = set(physics.bind(self._rhand_geoms).element_id)
    self._walker_geomids = set(physics.bind(self._walker_geoms).element_id)
    self._bucket_rewarded = False

    if self._randomize_init:
      timestep_ind = random_state.randint(
          len(self._trajectory._proto.timesteps))  # pylint: disable=protected-access
    else:
      timestep_ind = 0
    walker_init_timestep = self._trajectory._proto.timesteps[timestep_ind]  # pylint: disable=protected-access
    prop_init_timestep = self._trajectory._proto.timesteps[0]  # pylint: disable=protected-access

    self._walker.set_pose(
        physics,
        position=walker_init_timestep.walkers[0].position,
        quaternion=walker_init_timestep.walkers[0].quaternion)
    self._walker.set_velocity(
        physics, velocity=walker_init_timestep.walkers[0].velocity,
        angular_velocity=walker_init_timestep.walkers[0].angular_velocity)
    physics.bind(self._walker.mocap_joints).qpos = (
        walker_init_timestep.walkers[0].joints)
    physics.bind(self._walker.mocap_joints).qvel = (
        walker_init_timestep.walkers[0].joints_velocity)

    initial_prop_pos = np.copy(prop_init_timestep.props[0].position)
    initial_prop_pos[0] += 1.  # move ball (from mocap) relative to origin
    initial_prop_pos[1] = 0  # align ball with walker along y-axis
    self._prop.set_pose(
        physics,
        position=initial_prop_pos,
        quaternion=prop_init_timestep.props[0].quaternion)

    # specify the distributions of ball velocity componentwise
    x_vel_mag = 4.5*random_state.rand()+1.5  # m/s
    x_dist = 3  # approximate initial distance from walker to ball
    self._t_dist = x_dist/x_vel_mag  # target time at which to hit the humanoid
    z_offset = .4*random_state.rand()+.1  # height at which to hit person
    # compute velocity to satisfy desired projectile trajectory
    z_vel_mag = (4.9*(self._t_dist**2) + z_offset)/self._t_dist

    y_range = variation.evaluate(self._y_range, random_state=random_state)
    y_vel_mag = y_range*random_state.rand()-y_range/2
    trans_vel = [-x_vel_mag, y_vel_mag, z_vel_mag]
    ang_vel = 1.5*random_state.rand(3)-0.75
    self._prop.set_velocity(
        physics,
        velocity=trans_vel,
        angular_velocity=ang_vel)
示例#10
0
    def place_props():
      for prop in self._props:
        # Restore the original contact parameters for all geoms in the prop
        # we're about to place, so that we can detect if the new pose results in
        # collisions.
        self._restore_contact_parameters(physics, prop, cached_contact_params)

        success = False
        initial_position, initial_quaternion = prop.get_pose(physics)
        next_position, next_quaternion = initial_position, initial_quaternion
        for _ in range(self._max_attempts_per_prop):
          next_position = variation.evaluate(self._position,
                                             initial_value=initial_position,
                                             current_value=next_position,
                                             random_state=random_state)
          next_quaternion = variation.evaluate(self._quaternion,
                                               initial_value=initial_quaternion,
                                               current_value=next_quaternion,
                                               random_state=random_state)
          prop.set_pose(physics, next_position, next_quaternion)
          try:
            # If this pose results in collisions then there's a chance we'll
            # encounter a PhysicsError error here due to a full contact buffer,
            # in which case reject this pose and sample another.
            physics.forward()
          except control.PhysicsError:
            continue

          if (self._ignore_collisions
              or not self._has_collisions_with_prop(physics, prop)):
            success = True
            break

        if not success:
          raise RuntimeError(_REJECTION_SAMPLING_FAILED.format(
              model_name=prop.mjcf_model.model,
              max_attempts=self._max_attempts_per_prop))

      for prop in ignore_contacts_with_entities:
        self._restore_contact_parameters(physics, prop, cached_contact_params)
示例#11
0
    def after_step(self, physics, random_state):
        self._failure_termination = False
        for contact in physics.data.contact:
            if self._is_disallowed_contact(contact):
                self._failure_termination = True
                break
        if (self._moving_target and
                self._reward_step_counter >= self._steps_before_moving_target):

            # Reset the target position.
            target_x, target_y = variation.evaluate(
                self._target_spawn_position, random_state=random_state)
            physics.bind(self._target).pos = [target_x, target_y, 0.]

            # Reset the number of steps at the target for the moving target.
            self._reward_step_counter = 0
示例#12
0
    def regenerate(self, random_state):
        """Regenerates this corridor.

    New values are drawn from the `corridor_width` and `corridor_height`
    distributions specified in `_build`. The corridor resized accordingly, and
    new sets of obstructing walls are created according to values drawn from the
    `wall_gap`, `wall_width`, `wall_height`, and `wall_rgba` distributions
    specified in `_build`.

    Args:
      random_state: A `numpy.random.RandomState` object that is passed to the
        `Variation` objects.
    """
        super(WallsCorridor, self).regenerate(random_state)

        wall_x = variation.evaluate(
            self._wall_gap, random_state=random_state) - _CORRIDOR_X_PADDING
        if self._include_initial_padding:
            wall_x += 2 * _CORRIDOR_X_PADDING
        wall_side = 0
        wall_id = 0
        while wall_x < self._current_corridor_length:
            wall_width = variation.evaluate(self._wall_width,
                                            random_state=random_state)
            wall_height = variation.evaluate(self._wall_height,
                                             random_state=random_state)
            wall_rgba = variation.evaluate(self._wall_rgba,
                                           random_state=random_state)
            if variation.evaluate(self._swap_wall_side,
                                  random_state=random_state):
                wall_side = 1 - wall_side

            wall_pos = [
                wall_x, (2 * wall_side - 1) *
                (self._current_corridor_width - wall_width) / 2,
                wall_height / 2
            ]
            wall_size = [_WALL_THICKNESS / 2, wall_width / 2, wall_height / 2]
            self._walls_body.add('geom',
                                 type='box',
                                 name='wall_{}'.format(wall_id),
                                 pos=wall_pos,
                                 size=wall_size,
                                 rgba=wall_rgba)

            wall_id += 1
            wall_x += variation.evaluate(self._wall_gap,
                                         random_state=random_state)
示例#13
0
    def regenerate(self, random_state):
        """Regenerates this corridor.

    New values are drawn from the `corridor_width` and `corridor_height`
    distributions specified in `_build`. The corridor resized accordingly, and
    new sets of platforms are created according to values drawn from the
    `platform_length`, `gap_length`, and `ground_rgba` distributions specified
    in `_build`.

    Args:
      random_state: A `numpy.random.RandomState` object that is passed to the
        `Variation` objects.
    """
        # Resize the entire corridor first.
        super(GapsCorridor, self).regenerate(random_state)

        # Move the ground plane down and make it invisible.
        self._ground_plane.pos = [self._current_corridor_length / 2, 0, -10]
        self._ground_plane.rgba = [0, 0, 0, 0]

        # Clear the existing platform pieces.
        self._ground_body.geom.clear()

        # Make the first platform larger.
        platform_length = 3. * _CORRIDOR_X_PADDING
        platform_pos = [
            platform_length / 2,
            0,
            -_WALL_THICKNESS,
        ]
        platform_size = [
            platform_length / 2,
            self._current_corridor_width / 2,
            _WALL_THICKNESS,
        ]
        if self._aesthetic != 'default':
            self._ground_body.add('geom',
                                  type='box',
                                  name='start_floor',
                                  pos=platform_pos,
                                  size=platform_size,
                                  material=self._ground_material)
        else:
            self._ground_body.add('geom',
                                  type='box',
                                  rgba=variation.evaluate(
                                      self._ground_rgba, random_state),
                                  name='start_floor',
                                  pos=platform_pos,
                                  size=platform_size)

        current_x = platform_length
        platform_id = 0
        while current_x < self._current_corridor_length:
            platform_length = variation.evaluate(self._platform_length,
                                                 random_state=random_state)
            platform_pos = [
                current_x + platform_length / 2.,
                0,
                -_WALL_THICKNESS,
            ]
            platform_size = [
                platform_length / 2,
                self._current_corridor_width / 2,
                _WALL_THICKNESS,
            ]
            if self._aesthetic != 'default':
                self._ground_body.add('geom',
                                      type='box',
                                      name='floor_{}'.format(platform_id),
                                      pos=platform_pos,
                                      size=platform_size,
                                      material=self._ground_material)
            else:
                self._ground_body.add('geom',
                                      type='box',
                                      rgba=variation.evaluate(
                                          self._ground_rgba, random_state),
                                      name='floor_{}'.format(platform_id),
                                      pos=platform_pos,
                                      size=platform_size)

            platform_id += 1

            # Move x to start of the next platform.
            current_x += platform_length + variation.evaluate(
                self._gap_length, random_state=random_state)
  def __call__(self, physics, random_state, ignore_contacts_with_entities=None):
    """Sets initial prop poses.

    Args:
      physics: An `mjcf.Physics` instance.
      random_state: a `np.random.RandomState` instance.
      ignore_contacts_with_entities: a list of `composer.Entity` instances
        to ignore when detecting collisions. This can be used to ignore props
        that are not being placed by this initializer, but are known to be
        colliding in the current state of the simulation (for example if they
        are going to be placed by a different initializer that will be called
        subsequently).

    Raises:
      RuntimeError: If `ignore_collisions == False` and a non-colliding prop
        pose could not be found within `max_attempts_per_prop`.
    """
    if ignore_contacts_with_entities is None:
      ignore_contacts_with_entities = []
    # Temporarily disable contacts for all geoms that belong to props which
    # haven't yet been placed in order to free up space in the contact buffer.
    cached_contact_params = self._disable_and_cache_contact_parameters(
        physics, self._props + ignore_contacts_with_entities)

    try:
      physics.forward()
    except control.PhysicsError as e:
      _, _, tb = sys.exc_info()
      message = 'Despite disabling contact for all props in this initializer, '
      '`physics.forward()` resulted in a `PhysicsError`: {}'.format(e)
      new_exc = control.PhysicsError(message)
      six.reraise(control.PhysicsError, new_exc, tb)

    for prop in self._props:

      # Restore the original contact parameters for all geoms in the prop we're
      # about to place, so that we can detect if the new pose results in
      # collisions.
      self._restore_contact_parameters(physics, prop, cached_contact_params)

      success = False
      initial_position, initial_quaternion = prop.get_pose(physics)
      next_position, next_quaternion = initial_position, initial_quaternion
      for _ in range(self._max_attempts_per_prop):
        next_position = variation.evaluate(self._position,
                                           initial_value=initial_position,
                                           current_value=next_position,
                                           random_state=random_state)
        next_quaternion = variation.evaluate(self._quaternion,
                                             initial_value=initial_quaternion,
                                             current_value=next_quaternion,
                                             random_state=random_state)
        prop.set_pose(physics, next_position, next_quaternion)
        try:
          # If this pose results in collisions then there's a chance we'll
          # encounter a PhysicsError error here due to a full contact buffer,
          # in which case reject this pose and sample another.
          physics.forward()
        except control.PhysicsError:
          continue
        if (self._ignore_collisions
            or not self._has_collisions_with_prop(physics, prop)):
          success = True
          break

      if not success:
        raise RuntimeError(_REJECTION_SAMPLING_FAILED.format(
            model_name=prop.mjcf_model.model,
            max_attempts=self._max_attempts_per_prop))

    for prop in ignore_contacts_with_entities:
      self._restore_contact_parameters(physics, prop, cached_contact_params)

    if self._settle_physics:
      original_time = physics.data.time
      props_isolator = utils.JointStaticIsolator(physics, self._prop_joints)
      prop_joints_mj = physics.bind(self._prop_joints)
      while physics.data.time - original_time < self._max_settle_physics_time:
        with props_isolator:
          physics.step()
        if (np.max(np.abs(prop_joints_mj.qvel)) < _SETTLE_QVEL_TOL and
            np.max(np.abs(prop_joints_mj.qacc)) < _SETTLE_QACC_TOL):
          break
      physics.data.time = original_time
示例#15
0
 def test_getitem(self):
     value = deterministic.Constant(np.array([4, 5, 6, 7, 8]))
     np.testing.assert_array_equal(variation.evaluate(value[[3, 1]]),
                                   [7, 5])
  def initialize_episode_mjcf(self, random_state):
    self._arena.regenerate(random_state=random_state)

    target_x, target_y = variation.evaluate(
        self._target_spawn_position, random_state=random_state)
    self._target.pos = [target_x, target_y, 0.]