示例#1
0
def run(img_folder, dl_state, fprop_mode=False,
        img_size=(1152, 896), img_height=None, img_scale=None, 
        rescale_factor=None,
        equalize_hist=False, featurewise_center=False, featurewise_mean=71.8,
        net='vgg19', batch_size=128, patch_size=256, stride=8,
        avg_pool_size=(7, 7), hm_strides=(1, 1),
        pat_csv='./full_img/pat.csv', pat_list=None,
        out='./output/prob_heatmap.pkl'):
    '''Sweep mammograms with trained DL model to create prob heatmaps
    '''
    # Read some env variables.
    random_seed = int(os.getenv('RANDOM_SEED', 12345))
    rng = RandomState(random_seed)  # an rng used across board.
    gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))

    # Create image generator.
    imgen = DMImageDataGenerator(featurewise_center=featurewise_center)
    imgen.mean = featurewise_mean

    # Get image and label lists.
    df = pd.read_csv(pat_csv, header=0)
    df = df.set_index(['patient_id', 'side'])
    df.sort_index(inplace=True)
    if pat_list is not None:
        pat_ids = pd.read_csv(pat_list, header=0).values.ravel()
        pat_ids = pat_ids.tolist()
        print ("Read %d patient IDs" % (len(pat_ids)))
        df = df.loc[pat_ids]

    # Load DL model, preprocess.
    print ("Load patch classifier:", dl_state)
    sys.stdout.flush()
    dl_model, preprocess_input, _ = get_dl_model(net, resume_from=dl_state)
    if fprop_mode:
        dl_model = add_top_layers(dl_model, img_size, patch_net=net, 
                                  avg_pool_size=avg_pool_size, 
                                  return_heatmap=True, hm_strides=hm_strides)
    if gpu_count > 1:
        print ("Make the model parallel on %d GPUs" % (gpu_count))
        sys.stdout.flush()
        dl_model, _ = make_parallel(dl_model, gpu_count)
        parallelized = True
    else:
        parallelized = False
    if featurewise_center:
        preprocess_input = None

    # Sweep the whole images and classify patches.
    def const_filename(pat, side, view):
        basename = '_'.join([pat, side, view]) + '.png'
        return os.path.join(img_folder, basename)

    print ("Generate prob heatmaps")
    sys.stdout.flush()
    heatmaps = []
    cases_seen = 0
    nb_cases = len(df.index.unique())
    for i, (pat,side) in enumerate(df.index.unique()):
        ## DEBUG ##
        #if i >= 10:
        #    break
        ## DEBUG ##
        cancer = df.loc[pat].loc[side]['cancer']
        cc_fn = const_filename(pat, side, 'CC')
        if os.path.isfile(cc_fn):
            if fprop_mode:
                cc_x = read_img_for_pred(
                    cc_fn, equalize_hist=equalize_hist, data_format=data_format,
                    dup_3_channels=True, 
                    transformer=imgen.random_transform,
                    standardizer=imgen.standardize,
                    target_size=img_size, target_scale=img_scale,
                    rescale_factor=rescale_factor)
                cc_x = cc_x.reshape((1,) + cc_x.shape)
                cc_hm = dl_model.predict_on_batch(cc_x)[0]
                # import pdb; pdb.set_trace()
            else:
                cc_hm = get_prob_heatmap(
                    cc_fn, img_height, img_scale, patch_size, stride, 
                    dl_model, batch_size, featurewise_center=featurewise_center, 
                    featurewise_mean=featurewise_mean, preprocess=preprocess_input, 
                    parallelized=parallelized, equalize_hist=equalize_hist)
        else:
            cc_hm = None
        mlo_fn = const_filename(pat, side, 'MLO')
        if os.path.isfile(mlo_fn):
            if fprop_mode:
                mlo_x = read_img_for_pred(
                    mlo_fn, equalize_hist=equalize_hist, data_format=data_format,
                    dup_3_channels=True, 
                    transformer=imgen.random_transform,
                    standardizer=imgen.standardize,
                    target_size=img_size, target_scale=img_scale,
                    rescale_factor=rescale_factor)
                mlo_x = mlo_x.reshape((1,) + mlo_x.shape)
                mlo_hm = dl_model.predict_on_batch(mlo_x)[0]
            else:
                mlo_hm = get_prob_heatmap(
                    mlo_fn, img_height, img_scale, patch_size, stride, 
                    dl_model, batch_size, featurewise_center=featurewise_center, 
                    featurewise_mean=featurewise_mean, preprocess=preprocess_input, 
                    parallelized=parallelized, equalize_hist=equalize_hist)
        else:
            mlo_hm = None
        heatmaps.append({'patient_id':pat, 'side':side, 'cancer':cancer, 
                         'cc':cc_hm, 'mlo':mlo_hm})
        print ("scored %d/%d cases" % (i + 1, nb_cases))
        sys.stdout.flush()
    print ("Done.")

    # Save the result.
    print ("Saving result to external files.",)
    sys.stdout.flush()
    pickle.dump(heatmaps, open(out, 'w'))
    print ("Done.")
def run(train_dir,
        val_dir,
        test_dir,
        img_size=[256, 256],
        img_scale=None,
        rescale_factor=None,
        featurewise_center=True,
        featurewise_mean=59.6,
        equalize_hist=True,
        augmentation=False,
        class_list=['background', 'malignant', 'benign'],
        batch_size=64,
        train_bs_multiplier=.5,
        nb_epoch=5,
        top_layer_epochs=10,
        all_layer_epochs=20,
        load_val_ram=False,
        load_train_ram=False,
        net='resnet50',
        use_pretrained=True,
        nb_init_filter=32,
        init_filter_size=5,
        init_conv_stride=2,
        pool_size=2,
        pool_stride=2,
        weight_decay=.0001,
        weight_decay2=.0001,
        alpha=.0001,
        l1_ratio=.0,
        inp_dropout=.0,
        hidden_dropout=.0,
        hidden_dropout2=.0,
        optim='sgd',
        init_lr=.01,
        lr_patience=10,
        es_patience=25,
        resume_from=None,
        auto_batch_balance=False,
        pos_cls_weight=1.0,
        neg_cls_weight=1.0,
        top_layer_nb=None,
        top_layer_multiplier=.1,
        all_layer_multiplier=.01,
        best_model='./modelState/patch_clf.h5',
        final_model="NOSAVE"):
    '''Train a deep learning model for patch classifications
    '''
    best_model_dir = os.path.dirname(best_model)
    if not os.path.exists(best_model_dir):
        os.makedirs(best_model_dir)
    if final_model != "NOSAVE":
        final_model_dir = os.path.dirname(final_model)
        if not os.path.exists(final_model_dir):
            os.makedirs(final_model_dir)

    # ======= Environmental variables ======== #
    random_seed = int(os.getenv('RANDOM_SEED', 12345))
    nb_worker = int(os.getenv('NUM_CPU_CORES', 4))
    gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))

    # ========= Image generator ============== #
    if featurewise_center:
        print "Using feature-wise centering, mean:", featurewise_mean
        train_imgen = DMImageDataGenerator(featurewise_center=True)
        val_imgen = DMImageDataGenerator(featurewise_center=True)
        test_imgen = DMImageDataGenerator(featurewise_center=True)
        train_imgen.mean = featurewise_mean
        val_imgen.mean = featurewise_mean
        test_imgen.mean = featurewise_mean
    else:
        train_imgen = DMImageDataGenerator()
        val_imgen = DMImageDataGenerator()
        test_imgen = DMImageDataGenerator()

    # Add augmentation options.
    if augmentation:
        train_imgen.horizontal_flip = True
        train_imgen.vertical_flip = True
        train_imgen.rotation_range = 25.  # in degree.
        train_imgen.shear_range = .2  # in radians.
        train_imgen.zoom_range = [.8, 1.2]  # in proportion.
        train_imgen.channel_shift_range = 20.  # in pixel intensity values.

    # ================= Model creation ============== #
    model, preprocess_input, top_layer_nb = get_dl_model(
        net,
        nb_class=len(class_list),
        use_pretrained=use_pretrained,
        resume_from=resume_from,
        img_size=img_size,
        top_layer_nb=top_layer_nb,
        weight_decay=weight_decay,
        hidden_dropout=hidden_dropout,
        nb_init_filter=nb_init_filter,
        init_filter_size=init_filter_size,
        init_conv_stride=init_conv_stride,
        pool_size=pool_size,
        pool_stride=pool_stride,
        alpha=alpha,
        l1_ratio=l1_ratio,
        inp_dropout=inp_dropout)
    if featurewise_center:
        preprocess_input = None
    if gpu_count > 1:
        model, org_model = make_parallel(model, gpu_count)
    else:
        org_model = model

    # ============ Train & validation set =============== #
    train_bs = int(batch_size * train_bs_multiplier)
    if net != 'yaroslav':
        dup_3_channels = True
    else:
        dup_3_channels = False
    if load_train_ram:
        raw_imgen = DMImageDataGenerator()
        print "Create generator for raw train set"
        raw_generator = raw_imgen.flow_from_directory(
            train_dir,
            target_size=img_size,
            target_scale=img_scale,
            rescale_factor=rescale_factor,
            equalize_hist=equalize_hist,
            dup_3_channels=dup_3_channels,
            classes=class_list,
            class_mode='categorical',
            batch_size=train_bs,
            shuffle=False)
        print "Loading raw train set into RAM.",
        sys.stdout.flush()
        raw_set = load_dat_ram(raw_generator, raw_generator.nb_sample)
        print "Done."
        sys.stdout.flush()
        print "Create generator for train set"
        train_generator = train_imgen.flow(
            raw_set[0],
            raw_set[1],
            batch_size=train_bs,
            auto_batch_balance=auto_batch_balance,
            preprocess=preprocess_input,
            shuffle=True,
            seed=random_seed)
    else:
        print "Create generator for train set"
        train_generator = train_imgen.flow_from_directory(
            train_dir,
            target_size=img_size,
            target_scale=img_scale,
            rescale_factor=rescale_factor,
            equalize_hist=equalize_hist,
            dup_3_channels=dup_3_channels,
            classes=class_list,
            class_mode='categorical',
            auto_batch_balance=auto_batch_balance,
            batch_size=train_bs,
            preprocess=preprocess_input,
            shuffle=True,
            seed=random_seed)

    print "Create generator for val set"
    validation_set = val_imgen.flow_from_directory(
        val_dir,
        target_size=img_size,
        target_scale=img_scale,
        rescale_factor=rescale_factor,
        equalize_hist=equalize_hist,
        dup_3_channels=dup_3_channels,
        classes=class_list,
        class_mode='categorical',
        batch_size=batch_size,
        preprocess=preprocess_input,
        shuffle=False)
    sys.stdout.flush()
    if load_val_ram:
        print "Loading validation set into RAM.",
        sys.stdout.flush()
        validation_set = load_dat_ram(validation_set, validation_set.nb_sample)
        print "Done."
        sys.stdout.flush()

    # ==================== Model training ==================== #
    # Do 3-stage training.
    train_batches = int(train_generator.nb_sample / train_bs) + 1
    if isinstance(validation_set, tuple):
        val_samples = len(validation_set[0])
    else:
        val_samples = validation_set.nb_sample
    validation_steps = int(val_samples / batch_size)
    #### DEBUG ####
    # val_samples = 100
    #### DEBUG ####
    # import pdb; pdb.set_trace()
    model, loss_hist, acc_hist = do_3stage_training(
        model,
        org_model,
        train_generator,
        validation_set,
        validation_steps,
        best_model,
        train_batches,
        top_layer_nb,
        net,
        nb_epoch=nb_epoch,
        top_layer_epochs=top_layer_epochs,
        all_layer_epochs=all_layer_epochs,
        use_pretrained=use_pretrained,
        optim=optim,
        init_lr=init_lr,
        top_layer_multiplier=top_layer_multiplier,
        all_layer_multiplier=all_layer_multiplier,
        es_patience=es_patience,
        lr_patience=lr_patience,
        auto_batch_balance=auto_batch_balance,
        nb_class=len(class_list),
        pos_cls_weight=pos_cls_weight,
        neg_cls_weight=neg_cls_weight,
        nb_worker=nb_worker,
        weight_decay2=weight_decay2,
        hidden_dropout2=hidden_dropout2)

    # Training report.
    if len(loss_hist) > 0:
        min_loss_locs, = np.where(loss_hist == min(loss_hist))
        best_val_loss = loss_hist[min_loss_locs[0]]
        best_val_accuracy = acc_hist[min_loss_locs[0]]
        print "\n==== Training summary ===="
        print "Minimum val loss achieved at epoch:", min_loss_locs[0] + 1
        print "Best val loss:", best_val_loss
        print "Best val accuracy:", best_val_accuracy

    if final_model != "NOSAVE":
        model.save(final_model)

    # ==== Predict on test set ==== #
    print "\n==== Predicting on test set ===="
    test_generator = test_imgen.flow_from_directory(
        test_dir,
        target_size=img_size,
        target_scale=img_scale,
        rescale_factor=rescale_factor,
        equalize_hist=equalize_hist,
        dup_3_channels=dup_3_channels,
        classes=class_list,
        class_mode='categorical',
        batch_size=batch_size,
        preprocess=preprocess_input,
        shuffle=False)
    if test_generator.nb_sample:
        print "Test samples =", test_generator.nb_sample
        print "Load saved best model:", best_model + '.',
        sys.stdout.flush()
        org_model.load_weights(best_model)
        print "Done."
        test_steps = int(test_generator.nb_sample / batch_size)
        #### DEBUG ####
        # test_samples = 10
        #### DEBUG ####
        test_res = model.evaluate_generator(
            test_generator,
            test_steps,
            nb_worker=nb_worker,
            pickle_safe=True if nb_worker > 1 else False)
        print "Evaluation result on test set:", test_res
    else:
        print "Skip testing because no test sample is found."
def run(img_folder, dl_state, fprop_mode=False,
        img_size=(1152, 896), img_height=None, img_scale=None, 
        rescale_factor=None,
        equalize_hist=False, featurewise_center=False, featurewise_mean=71.8,
        net='vgg19', batch_size=128, patch_size=256, stride=8,
        avg_pool_size=(7, 7), hm_strides=(1, 1),
        pat_csv='./full_img/pat.csv', pat_list=None,
        out='./output/prob_heatmap.pkl'):
    '''Sweep mammograms with trained DL model to create prob heatmaps
    '''
    # Read some env variables.
    random_seed = int(os.getenv('RANDOM_SEED', 12345))
    rng = RandomState(random_seed)  # an rng used across board.
    gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))

    # Create image generator.
    imgen = DMImageDataGenerator(featurewise_center=featurewise_center)
    imgen.mean = featurewise_mean

    # Get image and label lists.
    df = pd.read_csv(pat_csv, header=0)
    df = df.set_index(['patient_id', 'side'])
    df.sort_index(inplace=True)
    if pat_list is not None:
        pat_ids = pd.read_csv(pat_list, header=0).values.ravel()
        pat_ids = pat_ids.tolist()
        print "Read %d patient IDs" % (len(pat_ids))
        df = df.loc[pat_ids]

    # Load DL model, preprocess.
    print "Load patch classifier:", dl_state; sys.stdout.flush()
    dl_model, preprocess_input, _ = get_dl_model(net, resume_from=dl_state)
    if fprop_mode:
        dl_model = add_top_layers(dl_model, img_size, patch_net=net, 
                                  avg_pool_size=avg_pool_size, 
                                  return_heatmap=True, hm_strides=hm_strides)
    if gpu_count > 1:
        print "Make the model parallel on %d GPUs" % (gpu_count)
        sys.stdout.flush()
        dl_model, _ = make_parallel(dl_model, gpu_count)
        parallelized = True
    else:
        parallelized = False
    if featurewise_center:
        preprocess_input = None

    # Sweep the whole images and classify patches.
    def const_filename(pat, side, view):
        basename = '_'.join([pat, side, view]) + '.png'
        return os.path.join(img_folder, basename)

    print "Generate prob heatmaps"; sys.stdout.flush()
    heatmaps = []
    cases_seen = 0
    nb_cases = len(df.index.unique())
    for i, (pat,side) in enumerate(df.index.unique()):
        ## DEBUG ##
        #if i >= 10:
        #    break
        ## DEBUG ##
        cancer = df.loc[pat].loc[side]['cancer']
        cc_fn = const_filename(pat, side, 'CC')
        if os.path.isfile(cc_fn):
            if fprop_mode:
                cc_x = read_img_for_pred(
                    cc_fn, equalize_hist=equalize_hist, data_format=data_format,
                    dup_3_channels=True, 
                    transformer=imgen.random_transform,
                    standardizer=imgen.standardize,
                    target_size=img_size, target_scale=img_scale,
                    rescale_factor=rescale_factor)
                cc_x = cc_x.reshape((1,) + cc_x.shape)
                cc_hm = dl_model.predict_on_batch(cc_x)[0]
                # import pdb; pdb.set_trace()
            else:
                cc_hm = get_prob_heatmap(
                    cc_fn, img_height, img_scale, patch_size, stride, 
                    dl_model, batch_size, featurewise_center=featurewise_center, 
                    featurewise_mean=featurewise_mean, preprocess=preprocess_input, 
                    parallelized=parallelized, equalize_hist=equalize_hist)
        else:
            cc_hm = None
        mlo_fn = const_filename(pat, side, 'MLO')
        if os.path.isfile(mlo_fn):
            if fprop_mode:
                mlo_x = read_img_for_pred(
                    mlo_fn, equalize_hist=equalize_hist, data_format=data_format,
                    dup_3_channels=True, 
                    transformer=imgen.random_transform,
                    standardizer=imgen.standardize,
                    target_size=img_size, target_scale=img_scale,
                    rescale_factor=rescale_factor)
                mlo_x = mlo_x.reshape((1,) + mlo_x.shape)
                mlo_hm = dl_model.predict_on_batch(mlo_x)[0]
            else:
                mlo_hm = get_prob_heatmap(
                    mlo_fn, img_height, img_scale, patch_size, stride, 
                    dl_model, batch_size, featurewise_center=featurewise_center, 
                    featurewise_mean=featurewise_mean, preprocess=preprocess_input, 
                    parallelized=parallelized, equalize_hist=equalize_hist)
        else:
            mlo_hm = None
        heatmaps.append({'patient_id':pat, 'side':side, 'cancer':cancer, 
                         'cc':cc_hm, 'mlo':mlo_hm})
        print "scored %d/%d cases" % (i + 1, nb_cases)
        sys.stdout.flush()
    print "Done."

    # Save the result.
    print "Saving result to external files.",
    sys.stdout.flush()
    pickle.dump(heatmaps, open(out, 'w'))
    print "Done."
def run(train_dir, val_dir, test_dir,
        img_size=[256, 256], img_scale=None, rescale_factor=None,
        featurewise_center=True, featurewise_mean=59.6,
        equalize_hist=True, augmentation=False,
        class_list=['background', 'malignant', 'benign'],
        batch_size=64, train_bs_multiplier=.5, nb_epoch=5,
        top_layer_epochs=10, all_layer_epochs=20,
        load_val_ram=False, load_train_ram=False,
        net='resnet50', use_pretrained=True,
        nb_init_filter=32, init_filter_size=5, init_conv_stride=2,
        pool_size=2, pool_stride=2,
        weight_decay=.0001, weight_decay2=.0001,
        alpha=.0001, l1_ratio=.0,
        inp_dropout=.0, hidden_dropout=.0, hidden_dropout2=.0,
        optim='sgd', init_lr=.01, lr_patience=10, es_patience=25,
        resume_from=None, auto_batch_balance=False,
        pos_cls_weight=1.0, neg_cls_weight=1.0,
        top_layer_nb=None, top_layer_multiplier=.1, all_layer_multiplier=.01,
        best_model='./modelState/patch_clf.h5',
        final_model="NOSAVE"):
    '''Train a deep learning model for patch classifications
    '''
    #给块分类训练一个深度学习模型
    # ======= Environmental variables ======== #
    random_seed = int(os.getenv('RANDOM_SEED', 12345))
    nb_worker = int(os.getenv('NUM_CPU_CORES', 4))
    gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))

    # ========= Image generator ============== #图片生成
    if featurewise_center:#数据集去中心化
        train_imgen = DMImageDataGenerator(featurewise_center=True)
        val_imgen = DMImageDataGenerator(featurewise_center=True)
        test_imgen = DMImageDataGenerator(featurewise_center=True)
        train_imgen.mean = featurewise_mean
        val_imgen.mean = featurewise_mean
        test_imgen.mean = featurewise_mean
    else:
        train_imgen = DMImageDataGenerator()
        val_imgen = DMImageDataGenerator()
        test_imgen = DMImageDataGenerator()

    # Add augmentation options.
    #图像增强
    if augmentation:
        train_imgen.horizontal_flip = True #进行随机水平翻转
        train_imgen.vertical_flip = True#进行随机垂直翻转
        train_imgen.rotation_range = 25.  # in degree.#整数,数据提升时图片随机转动的角度
        train_imgen.shear_range = .2  # in radians.浮点数,剪切强度(逆时针方向的剪切变换角度)
        train_imgen.zoom_range = [.8, 1.2]  # in proportion.
        '''
        浮点数或形如[lower,upper]的列表,随机缩放的幅度,若为浮点数,则相当于[lower,upper] = [1 - zoom_range, 1+zoom_range]
        '''
        train_imgen.channel_shift_range = 20.  # in pixel intensity values.
        #.浮点数,随机通道偏移的幅度
        #通过对颜色通道的数值偏移,改变图片的整体的颜色

    # ================= Model creation ============== #模型创建
    '''
    一、weight decay(权值衰减)使用的目的是防止过拟合。
    在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,
    所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大。
    hidden_dropout 防止过拟合
    init_conv_stride 卷积核步幅大小
    pool_size 池化层大小,pool_stride 池化层步幅(一般是最大值池化,和平均值)
    alpha 给图像添加透明度
    l1_ratio 交叉验证选择l1和l2惩罚之间的折中,类可以通过交叉验证来设置 alpha(α) 和 l1_ratio(ρ) **参数 :l1_ratio 参数来控制L1和L2的凸组合
    inp_dropout 输入权重随机抛弃
    '''
    model, preprocess_input, top_layer_nb = get_dl_model(
        net, nb_class=len(class_list), use_pretrained=use_pretrained,
        resume_from=resume_from, img_size=img_size, top_layer_nb=top_layer_nb,
        weight_decay=weight_decay, hidden_dropout=hidden_dropout,
        nb_init_filter=nb_init_filter, init_filter_size=init_filter_size,
        init_conv_stride=init_conv_stride, pool_size=pool_size,
        pool_stride=pool_stride, alpha=alpha, l1_ratio=l1_ratio,
        inp_dropout=inp_dropout)
    if featurewise_center:
        preprocess_input = None
    if gpu_count > 1:
        model, org_model = make_parallel(model, gpu_count)#并行计算
    else:
        org_model = model

    # ============ Train & validation set =============== #
    #训练和验证集
    train_bs = int(batch_size*train_bs_multiplier)#每批数据量的大小*乘数
    if net != 'yaroslav':#dm_keras_ext.py
        dup_3_channels = True
    else:
        dup_3_channels = False
    if load_train_ram:
        raw_imgen = DMImageDataGenerator()#t图片数据生成器
        #创建行训练集数据生成器
        print ("Create generator for raw train set")
        #以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据
        '''
        equalize_hist 直方图均衡,
        shuffle 随机打乱数据
        '''
        raw_generator = raw_imgen.flow_from_directory(
            train_dir, target_size=img_size, target_scale=img_scale,
            rescale_factor=rescale_factor,
            equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
            classes=class_list, class_mode='categorical',
            batch_size=train_bs, shuffle=False)
        #加载行训练数据集到内存
        print ("Loading raw train set into RAM.",sys.stdout.flush())
        #行数据集
        raw_set = load_dat_ram(raw_generator, raw_generator.nb_sample)
        print ("Done."); sys.stdout.flush()
        #为训练集创建生成器
        print ("Create generator for train set")
        #接收numpy数组和标签为参数,生成经过数据提升或标准化后的batch数据,并在一个无限循环中不断的返回batch数据
        train_generator = train_imgen.flow(
            raw_set[0], raw_set[1], batch_size=train_bs,
            auto_batch_balance=auto_batch_balance, preprocess=preprocess_input,
            shuffle=True, seed=random_seed)
    else:
        print ("Create generator for train set")
        #以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据
        train_generator = train_imgen.flow_from_directory(
            train_dir, target_size=img_size, target_scale=img_scale,
            rescale_factor=rescale_factor,
            equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
            classes=class_list, class_mode='categorical',
            auto_batch_balance=auto_batch_balance, batch_size=train_bs,
            preprocess=preprocess_input, shuffle=True, seed=random_seed)
    #创建验证集生成器
    print ("Create generator for val set")
    # 以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据
    validation_set = val_imgen.flow_from_directory(
        val_dir, target_size=img_size, target_scale=img_scale,
        rescale_factor=rescale_factor,
        equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
        classes=class_list, class_mode='categorical',
        batch_size=batch_size, preprocess=preprocess_input, shuffle=False)
    sys.stdout.flush()
    #是否加载验证集到内存中
    if load_val_ram:
        print ("Loading validation set into RAM.",
        sys.stdout.flush())
        validation_set = load_dat_ram(validation_set, validation_set.nb_sample)
        print ("Done."); sys.stdout.flush()

    # ==================== Model training ==================== #模型训练
    # Do 3-stage training.三个阶段训练
    train_batches = int(train_generator.nb_sample/train_bs) + 1
    #判断验证集是否三元组
    if isinstance(validation_set, tuple):
        val_samples = len(validation_set[0])
    else:
        val_samples = validation_set.nb_sample
    validation_steps = int(val_samples/batch_size)
    #### DEBUG ####
    # val_samples = 100
    #### DEBUG ####
    # import pdb; pdb.set_trace()
    #通过三阶段训练得到模型,损失率,准确率
    model, loss_hist, acc_hist = do_3stage_training(
        model, org_model, train_generator, validation_set, validation_steps,
        best_model, train_batches, top_layer_nb, net, nb_epoch=nb_epoch,
        top_layer_epochs=top_layer_epochs, all_layer_epochs=all_layer_epochs,
        use_pretrained=use_pretrained, optim=optim, init_lr=init_lr,
        top_layer_multiplier=top_layer_multiplier,
        all_layer_multiplier=all_layer_multiplier,
        es_patience=es_patience, lr_patience=lr_patience,
        auto_batch_balance=auto_batch_balance, nb_class=len(class_list),
        pos_cls_weight=pos_cls_weight, neg_cls_weight=neg_cls_weight,
        nb_worker=nb_worker, weight_decay2=weight_decay2,
        hidden_dropout2=hidden_dropout2)

    # Training report.
    #训练报告
    if len(loss_hist) > 0:
        min_loss_locs, = np.where(loss_hist == min(loss_hist))
        best_val_loss = loss_hist[min_loss_locs[0]]
        best_val_accuracy = acc_hist[min_loss_locs[0]]
        print ("\n==== Training summary ====")
        print ("Minimum val loss achieved at epoch:", min_loss_locs[0] + 1)
        print ("Best val loss:", best_val_loss)
        print ("Best val accuracy:", best_val_accuracy)
#保存模型
    if final_model != "NOSAVE":
        model.save(final_model)

    # ==== Predict on test set ==== #
    #基于测试集的预测
    print ("\n==== Predicting on test set ====")
    # 以文件夹路径为参数,生成经过数据提升/归一化后的数据,在一个无限循环中无限产生batch数据
    test_generator = test_imgen.flow_from_directory(
        test_dir, target_size=img_size, target_scale=img_scale,
        rescale_factor=rescale_factor,
        equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
        classes=class_list, class_mode='categorical', batch_size=batch_size,
        preprocess=preprocess_input, shuffle=False)
    print ("Test samples =", test_generator.nb_sample)
    #加载最好的模型
    print ("Load saved best model:", best_model + '.',
    sys.stdout.flush())
    #原始模型加载最好模型的权重
    org_model.load_weights(best_model)
    print ("Done.")
    #测试的步数
    test_steps = int(test_generator.nb_sample/batch_size)
    #### DEBUG ####
    # test_samples = 10
    #### DEBUG ####
    test_res = model.evaluate_generator(
        test_generator, test_steps, nb_worker=nb_worker,
        pickle_safe=True if nb_worker > 1 else False)
    print ("Evaluation result on test set:", test_res)
def run(train_dir, val_dir, test_dir,
        img_size=[256, 256], img_scale=None, rescale_factor=None,
        featurewise_center=True, featurewise_mean=59.6, 
        equalize_hist=True, augmentation=False,
        class_list=['background', 'malignant', 'benign'],
        batch_size=64, train_bs_multiplier=.5, nb_epoch=5, 
        top_layer_epochs=10, all_layer_epochs=20,
        load_val_ram=False, load_train_ram=False,
        net='resnet50', use_pretrained=True,
        nb_init_filter=32, init_filter_size=5, init_conv_stride=2, 
        pool_size=2, pool_stride=2, 
        weight_decay=.0001, weight_decay2=.0001, 
        alpha=.0001, l1_ratio=.0, 
        inp_dropout=.0, hidden_dropout=.0, hidden_dropout2=.0, 
        optim='sgd', init_lr=.01, lr_patience=10, es_patience=25,
        resume_from=None, auto_batch_balance=False, 
        pos_cls_weight=1.0, neg_cls_weight=1.0,
        top_layer_nb=None, top_layer_multiplier=.1, all_layer_multiplier=.01,
        best_model='./modelState/patch_clf.h5',
        final_model="NOSAVE"):
    '''Train a deep learning model for patch classifications
    '''

    # ======= Environmental variables ======== #
    random_seed = int(os.getenv('RANDOM_SEED', 12345))
    nb_worker = int(os.getenv('NUM_CPU_CORES', 4))
    gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))

    # ========= Image generator ============== #
    if featurewise_center:
        train_imgen = DMImageDataGenerator(featurewise_center=True)
        val_imgen = DMImageDataGenerator(featurewise_center=True)
        test_imgen = DMImageDataGenerator(featurewise_center=True)
        train_imgen.mean = featurewise_mean
        val_imgen.mean = featurewise_mean
        test_imgen.mean = featurewise_mean
    else:
        train_imgen = DMImageDataGenerator()
        val_imgen = DMImageDataGenerator()
        test_imgen = DMImageDataGenerator()

    # Add augmentation options.
    if augmentation:
        train_imgen.horizontal_flip = True 
        train_imgen.vertical_flip = True
        train_imgen.rotation_range = 25.  # in degree.
        train_imgen.shear_range = .2  # in radians.
        train_imgen.zoom_range = [.8, 1.2]  # in proportion.
        train_imgen.channel_shift_range = 20.  # in pixel intensity values.

    # ================= Model creation ============== #
    model, preprocess_input, top_layer_nb = get_dl_model(
        net, nb_class=len(class_list), use_pretrained=use_pretrained,
        resume_from=resume_from, img_size=img_size, top_layer_nb=top_layer_nb,
        weight_decay=weight_decay, hidden_dropout=hidden_dropout, 
        nb_init_filter=nb_init_filter, init_filter_size=init_filter_size, 
        init_conv_stride=init_conv_stride, pool_size=pool_size, 
        pool_stride=pool_stride, alpha=alpha, l1_ratio=l1_ratio, 
        inp_dropout=inp_dropout)
    if featurewise_center:
        preprocess_input = None
    if gpu_count > 1:
        model, org_model = make_parallel(model, gpu_count)
    else:
        org_model = model

    # ============ Train & validation set =============== #
    train_bs = int(batch_size*train_bs_multiplier)
    if net != 'yaroslav':
        dup_3_channels = True
    else:
        dup_3_channels = False
    if load_train_ram:
        raw_imgen = DMImageDataGenerator()
        print "Create generator for raw train set"
        raw_generator = raw_imgen.flow_from_directory(
            train_dir, target_size=img_size, target_scale=img_scale, 
            rescale_factor=rescale_factor,
            equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
            classes=class_list, class_mode='categorical', 
            batch_size=train_bs, shuffle=False)
        print "Loading raw train set into RAM.",
        sys.stdout.flush()
        raw_set = load_dat_ram(raw_generator, raw_generator.nb_sample)
        print "Done."; sys.stdout.flush()
        print "Create generator for train set"
        train_generator = train_imgen.flow(
            raw_set[0], raw_set[1], batch_size=train_bs, 
            auto_batch_balance=auto_batch_balance, preprocess=preprocess_input, 
            shuffle=True, seed=random_seed)
    else:
        print "Create generator for train set"
        train_generator = train_imgen.flow_from_directory(
            train_dir, target_size=img_size, target_scale=img_scale,
            rescale_factor=rescale_factor,
            equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
            classes=class_list, class_mode='categorical', 
            auto_batch_balance=auto_batch_balance, batch_size=train_bs, 
            preprocess=preprocess_input, shuffle=True, seed=random_seed)

    print "Create generator for val set"
    validation_set = val_imgen.flow_from_directory(
        val_dir, target_size=img_size, target_scale=img_scale,
        rescale_factor=rescale_factor,
        equalize_hist=equalize_hist, dup_3_channels=dup_3_channels,
        classes=class_list, class_mode='categorical', 
        batch_size=batch_size, preprocess=preprocess_input, shuffle=False)
    sys.stdout.flush()
    if load_val_ram:
        print "Loading validation set into RAM.",
        sys.stdout.flush()
        validation_set = load_dat_ram(validation_set, validation_set.nb_sample)
        print "Done."; sys.stdout.flush()

    # ==================== Model training ==================== #
    # Do 3-stage training.
    train_batches = int(train_generator.nb_sample/train_bs) + 1
    if isinstance(validation_set, tuple):
        val_samples = len(validation_set[0])
    else:
        val_samples = validation_set.nb_sample
    validation_steps = int(val_samples/batch_size)
    #### DEBUG ####
    # val_samples = 100
    #### DEBUG ####
    # import pdb; pdb.set_trace()
    model, loss_hist, acc_hist = do_3stage_training(
        model, org_model, train_generator, validation_set, validation_steps, 
        best_model, train_batches, top_layer_nb, net, nb_epoch=nb_epoch,
        top_layer_epochs=top_layer_epochs, all_layer_epochs=all_layer_epochs,
        use_pretrained=use_pretrained, optim=optim, init_lr=init_lr, 
        top_layer_multiplier=top_layer_multiplier, 
        all_layer_multiplier=all_layer_multiplier,
        es_patience=es_patience, lr_patience=lr_patience, 
        auto_batch_balance=auto_batch_balance, nb_class=len(class_list),
        pos_cls_weight=pos_cls_weight, neg_cls_weight=neg_cls_weight,
        nb_worker=nb_worker, weight_decay2=weight_decay2, 
        hidden_dropout2=hidden_dropout2)

    # Training report.
    if len(loss_hist) > 0:
        min_loss_locs, = np.where(loss_hist == min(loss_hist))
        best_val_loss = loss_hist[min_loss_locs[0]]
        best_val_accuracy = acc_hist[min_loss_locs[0]]
        print "\n==== Training summary ===="
        print "Minimum val loss achieved at epoch:", min_loss_locs[0] + 1
        print "Best val loss:", best_val_loss
        print "Best val accuracy:", best_val_accuracy

    if final_model != "NOSAVE":
        model.save(final_model)

    # ==== Predict on test set ==== #
    print "\n==== Predicting on test set ===="
    test_generator = test_imgen.flow_from_directory(
        test_dir, target_size=img_size, target_scale=img_scale,
        rescale_factor=rescale_factor,
        equalize_hist=equalize_hist, dup_3_channels=dup_3_channels, 
        classes=class_list, class_mode='categorical', batch_size=batch_size, 
        preprocess=preprocess_input, shuffle=False)
    print "Test samples =", test_generator.nb_sample
    print "Load saved best model:", best_model + '.',
    sys.stdout.flush()
    org_model.load_weights(best_model)
    print "Done."
    test_steps = int(test_generator.nb_sample/batch_size)
    #### DEBUG ####
    # test_samples = 10
    #### DEBUG ####
    test_res = model.evaluate_generator(
        test_generator, test_steps, nb_worker=nb_worker, 
        pickle_safe=True if nb_worker > 1 else False)
    print "Evaluation result on test set:", test_res
示例#6
0
def run(img_folder,
        dl_state,
        best_model,
        img_extension='dcm',
        img_height=1024,
        img_scale=255.,
        equalize_hist=False,
        featurewise_center=False,
        featurewise_mean=91.6,
        neg_vs_pos_ratio=1.,
        val_size=.1,
        test_size=.15,
        net='vgg19',
        batch_size=128,
        train_bs_multiplier=.5,
        patch_size=256,
        stride=8,
        roi_cutoff=.9,
        bkg_cutoff=[.5, 1.],
        sample_bkg=True,
        train_out='./scratch/train',
        val_out='./scratch/val',
        test_out='./scratch/test',
        out_img_ext='png',
        neg_name='benign',
        pos_name='malignant',
        bkg_name='background',
        augmentation=True,
        load_train_ram=False,
        load_val_ram=False,
        top_layer_nb=None,
        nb_epoch=10,
        top_layer_epochs=0,
        all_layer_epochs=0,
        optim='sgd',
        init_lr=.01,
        top_layer_multiplier=.01,
        all_layer_multiplier=.0001,
        es_patience=5,
        lr_patience=2,
        weight_decay2=.01,
        bias_multiplier=.1,
        hidden_dropout2=.0,
        exam_tsv='./metadata/exams_metadata.tsv',
        img_tsv='./metadata/images_crosswalk.tsv',
        out='./modelState/subj_lists.pkl'):
    '''Finetune a trained DL model on a different dataset
    '''
    # Read some env variables.
    random_seed = int(os.getenv('RANDOM_SEED', 12345))
    rng = RandomState(random_seed)  # an rng used across board.
    nb_worker = int(os.getenv('NUM_CPU_CORES', 4))
    gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))

    # Load and split image and label lists.
    meta_man = DMMetaManager(exam_tsv=exam_tsv,
                             img_tsv=img_tsv,
                             img_folder=img_folder,
                             img_extension=img_extension)
    subj_list, subj_labs = meta_man.get_subj_labs()
    subj_labs = np.array(subj_labs)
    print "Found %d subjests" % (len(subj_list))
    print "cancer patients=%d, normal patients=%d" \
            % ((subj_labs==1).sum(), (subj_labs==0).sum())
    if neg_vs_pos_ratio is not None:
        subj_list, subj_labs = DMMetaManager.subset_subj_list(
            subj_list, subj_labs, neg_vs_pos_ratio, random_seed)
        subj_labs = np.array(subj_labs)
        print "After subsetting, there are %d subjects" % (len(subj_list))
        print "cancer patients=%d, normal patients=%d" \
                % ((subj_labs==1).sum(), (subj_labs==0).sum())
    subj_train, subj_test, labs_train, labs_test = train_test_split(
        subj_list,
        subj_labs,
        test_size=test_size,
        stratify=subj_labs,
        random_state=random_seed)
    subj_train, subj_val, labs_train, labs_val = train_test_split(
        subj_train,
        labs_train,
        test_size=val_size,
        stratify=labs_train,
        random_state=random_seed)

    # Get image lists.
    # >>>> Debug <<<< #
    # subj_train = subj_train[:5]
    # subj_val = subj_val[:5]
    # subj_test = subj_test[:5]
    # >>>> Debug <<<< #
    print "Get flattened image lists"
    img_train, ilab_train = meta_man.get_flatten_img_list(subj_train)
    img_val, ilab_val = meta_man.get_flatten_img_list(subj_val)
    img_test, ilab_test = meta_man.get_flatten_img_list(subj_test)
    ilab_train = np.array(ilab_train)
    ilab_val = np.array(ilab_val)
    ilab_test = np.array(ilab_test)
    print "On train set, positive img=%d, negative img=%d" \
            % ((ilab_train==1).sum(), (ilab_train==0).sum())
    print "On val set, positive img=%d, negative img=%d" \
            % ((ilab_val==1).sum(), (ilab_val==0).sum())
    print "On test set, positive img=%d, negative img=%d" \
            % ((ilab_test==1).sum(), (ilab_test==0).sum())
    sys.stdout.flush()

    # Save the subj lists.
    print "Saving subject lists to external files.",
    sys.stdout.flush()
    pickle.dump((subj_train, subj_val, subj_test), open(out, 'w'))
    print "Done."

    # Load DL model, preprocess function.
    print "Load patch classifier:", dl_state
    sys.stdout.flush()
    dl_model, preprocess_input, top_layer_nb = get_dl_model(
        net,
        use_pretrained=True,
        resume_from=dl_state,
        top_layer_nb=top_layer_nb)
    if featurewise_center:
        preprocess_input = None
    if gpu_count > 1:
        print "Make the model parallel on %d GPUs" % (gpu_count)
        sys.stdout.flush()
        dl_model, org_model = make_parallel(dl_model, gpu_count)
        parallelized = True
    else:
        org_model = dl_model
        parallelized = False

    # Sweep the whole images and classify patches.
    print "Score image patches and write them to:", train_out
    sys.stdout.flush()
    nb_roi_train, nb_bkg_train = score_write_patches(
        img_train,
        ilab_train,
        img_height,
        img_scale,
        patch_size,
        stride,
        dl_model,
        batch_size,
        neg_out=os.path.join(train_out, neg_name),
        pos_out=os.path.join(train_out, pos_name),
        bkg_out=os.path.join(train_out, bkg_name),
        preprocess=preprocess_input,
        equalize_hist=equalize_hist,
        featurewise_center=featurewise_center,
        featurewise_mean=featurewise_mean,
        roi_cutoff=roi_cutoff,
        bkg_cutoff=bkg_cutoff,
        sample_bkg=sample_bkg,
        img_ext=out_img_ext,
        random_seed=random_seed,
        parallelized=parallelized)
    print "Wrote %d ROI and %d bkg patches" % (nb_roi_train, nb_bkg_train)
    ####
    print "Score image patches and write them to:", val_out
    sys.stdout.flush()
    nb_roi_val, nb_bkg_val = score_write_patches(
        img_val,
        ilab_val,
        img_height,
        img_scale,
        patch_size,
        stride,
        dl_model,
        batch_size,
        neg_out=os.path.join(val_out, neg_name),
        pos_out=os.path.join(val_out, pos_name),
        bkg_out=os.path.join(val_out, bkg_name),
        preprocess=preprocess_input,
        equalize_hist=equalize_hist,
        featurewise_center=featurewise_center,
        featurewise_mean=featurewise_mean,
        roi_cutoff=roi_cutoff,
        bkg_cutoff=bkg_cutoff,
        sample_bkg=sample_bkg,
        img_ext=out_img_ext,
        random_seed=random_seed,
        parallelized=parallelized)
    print "Wrote %d ROI and %d bkg patches" % (nb_roi_val, nb_bkg_val)
    ####
    print "Score image patches and write them to:", test_out
    sys.stdout.flush()
    nb_roi_test, nb_bkg_test = score_write_patches(
        img_test,
        ilab_test,
        img_height,
        img_scale,
        patch_size,
        stride,
        dl_model,
        batch_size,
        neg_out=os.path.join(test_out, neg_name),
        pos_out=os.path.join(test_out, pos_name),
        bkg_out=os.path.join(test_out, bkg_name),
        preprocess=preprocess_input,
        equalize_hist=equalize_hist,
        featurewise_center=featurewise_center,
        featurewise_mean=featurewise_mean,
        roi_cutoff=roi_cutoff,
        bkg_cutoff=bkg_cutoff,
        sample_bkg=sample_bkg,
        img_ext=out_img_ext,
        random_seed=random_seed,
        parallelized=parallelized)
    print "Wrote %d ROI and %d bkg patches" % (nb_roi_test, nb_bkg_test)
    sys.stdout.flush()

    # ==== Image generators ==== #
    if featurewise_center:
        train_imgen = DMImageDataGenerator(featurewise_center=True)
        val_imgen = DMImageDataGenerator(featurewise_center=True)
        test_imgen = DMImageDataGenerator(featurewise_center=True)
        train_imgen.mean = featurewise_mean
        val_imgen.mean = featurewise_mean
        test_imgen.mean = featurewise_mean
    else:
        train_imgen = DMImageDataGenerator()
        val_imgen = DMImageDataGenerator()
        test_imgen = DMImageDataGenerator()
    if augmentation:
        train_imgen.horizontal_flip = True
        train_imgen.vertical_flip = True
        train_imgen.rotation_range = 45.
        train_imgen.shear_range = np.pi / 8.

    # ==== Train & val set ==== #
    # Note: the images are histogram equalized before they were written to
    # external folders.
    train_bs = int(batch_size * train_bs_multiplier)
    if load_train_ram:
        raw_imgen = DMImageDataGenerator()
        print "Create generator for raw train set"
        raw_generator = raw_imgen.flow_from_directory(
            train_out,
            target_size=(patch_size, patch_size),
            target_scale=img_scale,
            equalize_hist=False,
            dup_3_channels=True,
            classes=[bkg_name, pos_name, neg_name],
            class_mode='categorical',
            batch_size=train_bs,
            shuffle=False)
        print "Loading raw train set into RAM.",
        sys.stdout.flush()
        raw_set = load_dat_ram(raw_generator, raw_generator.nb_sample)
        print "Done."
        sys.stdout.flush()
        print "Create generator for train set"
        train_generator = train_imgen.flow(raw_set[0],
                                           raw_set[1],
                                           batch_size=train_bs,
                                           auto_batch_balance=True,
                                           preprocess=preprocess_input,
                                           shuffle=True,
                                           seed=random_seed)
    else:
        print "Create generator for train set"
        train_generator = train_imgen.flow_from_directory(
            train_out,
            target_size=(patch_size, patch_size),
            target_scale=img_scale,
            equalize_hist=False,
            dup_3_channels=True,
            classes=[bkg_name, pos_name, neg_name],
            class_mode='categorical',
            auto_batch_balance=True,
            batch_size=train_bs,
            preprocess=preprocess_input,
            shuffle=True,
            seed=random_seed)

    print "Create generator for val set"
    sys.stdout.flush()
    validation_set = val_imgen.flow_from_directory(
        val_out,
        target_size=(patch_size, patch_size),
        target_scale=img_scale,
        equalize_hist=False,
        dup_3_channels=True,
        classes=[bkg_name, pos_name, neg_name],
        class_mode='categorical',
        batch_size=batch_size,
        preprocess=preprocess_input,
        shuffle=False)
    val_samples = validation_set.nb_sample
    if parallelized and val_samples % batch_size != 0:
        val_samples -= val_samples % batch_size
    print "Validation samples =", val_samples
    sys.stdout.flush()
    if load_val_ram:
        print "Loading validation set into RAM.",
        sys.stdout.flush()
        validation_set = load_dat_ram(validation_set, val_samples)
        print "Done."
        print "Loaded %d val samples" % (len(validation_set[0]))
        sys.stdout.flush()

    # ==== Model finetuning ==== #
    train_batches = int(train_generator.nb_sample / train_bs) + 1
    samples_per_epoch = train_bs * train_batches
    # import pdb; pdb.set_trace()
    dl_model, loss_hist, acc_hist = do_3stage_training(
        dl_model,
        org_model,
        train_generator,
        validation_set,
        val_samples,
        best_model,
        samples_per_epoch,
        top_layer_nb,
        net,
        nb_epoch=nb_epoch,
        top_layer_epochs=top_layer_epochs,
        all_layer_epochs=all_layer_epochs,
        use_pretrained=True,
        optim=optim,
        init_lr=init_lr,
        top_layer_multiplier=top_layer_multiplier,
        all_layer_multiplier=all_layer_multiplier,
        es_patience=es_patience,
        lr_patience=lr_patience,
        auto_batch_balance=True,
        nb_worker=nb_worker,
        weight_decay2=weight_decay2,
        bias_multiplier=bias_multiplier,
        hidden_dropout2=hidden_dropout2)

    # Training report.
    min_loss_locs, = np.where(loss_hist == min(loss_hist))
    best_val_loss = loss_hist[min_loss_locs[0]]
    best_val_accuracy = acc_hist[min_loss_locs[0]]
    print "\n==== Training summary ===="
    print "Minimum val loss achieved at epoch:", min_loss_locs[0] + 1
    print "Best val loss:", best_val_loss
    print "Best val accuracy:", best_val_accuracy

    # ==== Predict on test set ==== #
    print "\n==== Predicting on test set ===="
    print "Create generator for test set"
    test_generator = test_imgen.flow_from_directory(
        test_out,
        target_size=(patch_size, patch_size),
        target_scale=img_scale,
        equalize_hist=False,
        dup_3_channels=True,
        classes=[bkg_name, pos_name, neg_name],
        class_mode='categorical',
        batch_size=batch_size,
        preprocess=preprocess_input,
        shuffle=False)
    test_samples = test_generator.nb_sample
    if parallelized and test_samples % batch_size != 0:
        test_samples -= test_samples % batch_size
    print "Test samples =", test_samples
    print "Load saved best model:", best_model + '.',
    sys.stdout.flush()
    org_model.load_weights(best_model)
    print "Done."
    test_res = dl_model.evaluate_generator(
        test_generator,
        test_samples,
        nb_worker=nb_worker,
        pickle_safe=True if nb_worker > 1 else False)
    print "Evaluation result on test set:", test_res
示例#7
0
def run(train_dir,
        val_dir,
        test_dir,
        img_size=[256, 256],
        img_scale=255.,
        featurewise_center=True,
        featurewise_mean=59.6,
        equalize_hist=True,
        augmentation=False,
        class_list=['background', 'malignant', 'benign'],
        batch_size=64,
        train_bs_multiplier=.5,
        nb_epoch=5,
        top_layer_epochs=10,
        all_layer_epochs=20,
        load_val_ram=False,
        load_train_ram=False,
        net='resnet50',
        use_pretrained=True,
        nb_init_filter=32,
        init_filter_size=5,
        init_conv_stride=2,
        pool_size=2,
        pool_stride=2,
        weight_decay=.0001,
        weight_decay2=.0001,
        bias_multiplier=.1,
        alpha=.0001,
        l1_ratio=.0,
        inp_dropout=.0,
        hidden_dropout=.0,
        hidden_dropout2=.0,
        optim='sgd',
        init_lr=.01,
        lr_patience=10,
        es_patience=25,
        resume_from=None,
        auto_batch_balance=False,
        pos_cls_weight=1.0,
        neg_cls_weight=1.0,
        top_layer_nb=None,
        top_layer_multiplier=.1,
        all_layer_multiplier=.01,
        best_model='./modelState/patch_clf.h5',
        final_model="NOSAVE"):
    '''Train a deep learning model for patch classifications
    '''

    # ======= Environmental variables ======== #
    random_seed = int(os.getenv('RANDOM_SEED', 12345))
    nb_worker = int(os.getenv('NUM_CPU_CORES', 4))
    gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))

    # ========= Image generator ============== #
    # if use_pretrained:  # use pretrained model's preprocessing.
    #     train_imgen = DMImageDataGenerator()
    #     val_imgen = DMImageDataGenerator()
    if featurewise_center:
        # fitgen = DMImageDataGenerator()
        # # Calculate pixel-level mean and std.
        # print "Create generator for mean and std fitting"
        # fit_patch_generator = fitgen.flow_from_directory(
        #     train_dir, target_size=img_size, target_scale=img_scale,
        #     classes=class_list, class_mode=None, batch_size=batch_size,
        #     shuffle=True, seed=random_seed)
        # sys.stdout.flush()
        # fit_X_lst = []
        # patches_seen = 0
        # while patches_seen < fit_size:
        #     X = fit_patch_generator.next()
        #     fit_X_lst.append(X)
        #     patches_seen += len(X)
        # fit_X_arr = np.concatenate(fit_X_lst)
        train_imgen = DMImageDataGenerator(featurewise_center=True)
        # featurewise_std_normalization=True)
        val_imgen = DMImageDataGenerator(featurewise_center=True)
        test_imgen = DMImageDataGenerator(featurewise_center=True)
        # featurewise_std_normalization=True)
        # train_imgen.fit(fit_X_arr)
        # print "Found mean=%.2f, std=%.2f" % (train_imgen.mean, train_imgen.std)
        # sys.stdout.flush()
        train_imgen.mean = featurewise_mean
        val_imgen.mean = featurewise_mean
        test_imgen.mean = featurewise_mean
        # del fit_X_arr, fit_X_lst
    else:
        train_imgen = DMImageDataGenerator()
        val_imgen = DMImageDataGenerator()
        test_imgen = DMImageDataGenerator()
        # train_imgen = DMImageDataGenerator(
        #     samplewise_center=True,
        #     samplewise_std_normalization=True)
        # val_imgen = DMImageDataGenerator(
        #     samplewise_center=True,
        #     samplewise_std_normalization=True)

    # Add augmentation options.
    if augmentation:
        train_imgen.horizontal_flip = True
        train_imgen.vertical_flip = True
        train_imgen.rotation_range = 45.
        train_imgen.shear_range = np.pi / 8.

    # ================= Model creation ============== #
    model, preprocess_input, top_layer_nb = get_dl_model(
        net,
        nb_class=len(class_list),
        use_pretrained=use_pretrained,
        resume_from=resume_from,
        img_size=img_size,
        top_layer_nb=top_layer_nb,
        weight_decay=weight_decay,
        bias_multiplier=bias_multiplier,
        hidden_dropout=hidden_dropout,
        nb_init_filter=nb_init_filter,
        init_filter_size=init_filter_size,
        init_conv_stride=init_conv_stride,
        pool_size=pool_size,
        pool_stride=pool_stride,
        alpha=alpha,
        l1_ratio=l1_ratio,
        inp_dropout=inp_dropout)
    if featurewise_center:
        preprocess_input = None
    if gpu_count > 1:
        model, org_model = make_parallel(model, gpu_count)
    else:
        org_model = model

    # ============ Train & validation set =============== #
    train_bs = int(batch_size * train_bs_multiplier)
    if use_pretrained:
        dup_3_channels = True
    else:
        dup_3_channels = False
    if load_train_ram:
        raw_imgen = DMImageDataGenerator()
        print "Create generator for raw train set"
        raw_generator = raw_imgen.flow_from_directory(
            train_dir,
            target_size=img_size,
            target_scale=img_scale,
            equalize_hist=equalize_hist,
            dup_3_channels=dup_3_channels,
            classes=class_list,
            class_mode='categorical',
            batch_size=train_bs,
            shuffle=False)
        print "Loading raw train set into RAM.",
        sys.stdout.flush()
        raw_set = load_dat_ram(raw_generator, raw_generator.nb_sample)
        print "Done."
        sys.stdout.flush()
        print "Create generator for train set"
        train_generator = train_imgen.flow(
            raw_set[0],
            raw_set[1],
            batch_size=train_bs,
            auto_batch_balance=auto_batch_balance,
            preprocess=preprocess_input,
            shuffle=True,
            seed=random_seed)
    else:
        print "Create generator for train set"
        train_generator = train_imgen.flow_from_directory(
            train_dir,
            target_size=img_size,
            target_scale=img_scale,
            equalize_hist=equalize_hist,
            dup_3_channels=dup_3_channels,
            classes=class_list,
            class_mode='categorical',
            auto_batch_balance=auto_batch_balance,
            batch_size=train_bs,
            preprocess=preprocess_input,
            shuffle=True,
            seed=random_seed)
    # import pdb; pdb.set_trace()

    print "Create generator for val set"
    validation_set = val_imgen.flow_from_directory(
        val_dir,
        target_size=img_size,
        target_scale=img_scale,
        equalize_hist=equalize_hist,
        dup_3_channels=dup_3_channels,
        classes=class_list,
        class_mode='categorical',
        batch_size=batch_size,
        preprocess=preprocess_input,
        shuffle=False)
    sys.stdout.flush()
    if load_val_ram:
        print "Loading validation set into RAM.",
        sys.stdout.flush()
        validation_set = load_dat_ram(validation_set, validation_set.nb_sample)
        print "Done."
        sys.stdout.flush()

    # ==================== Model training ==================== #
    # Callbacks and class weight.
    early_stopping = EarlyStopping(monitor='val_loss',
                                   patience=es_patience,
                                   verbose=1)
    checkpointer = ModelCheckpoint(best_model,
                                   monitor='val_acc',
                                   verbose=1,
                                   save_best_only=True)
    stdout_flush = DMFlush()
    callbacks = [early_stopping, checkpointer, stdout_flush]
    if optim == 'sgd':
        reduce_lr = ReduceLROnPlateau(monitor='val_loss',
                                      factor=0.5,
                                      patience=lr_patience,
                                      verbose=1)
        callbacks.append(reduce_lr)
    if auto_batch_balance:
        class_weight = None
    elif len(class_list) == 2:
        class_weight = {0: 1.0, 1: pos_cls_weight}
    elif len(class_list) == 3:
        class_weight = {0: 1.0, 1: pos_cls_weight, 2: neg_cls_weight}
    else:
        class_weight = None
    # Do 3-stage training.
    train_batches = int(train_generator.nb_sample / train_bs) + 1
    samples_per_epoch = train_bs * train_batches
    #### DEBUG ####
    # samples_per_epoch = train_bs*10
    #### DEBUG ####
    if isinstance(validation_set, tuple):
        val_samples = len(validation_set[0])
    else:
        val_samples = validation_set.nb_sample
    #### DEBUG ####
    # val_samples = 100
    #### DEBUG ####
    model, loss_hist, acc_hist = do_3stage_training(
        model,
        org_model,
        train_generator,
        validation_set,
        val_samples,
        best_model,
        samples_per_epoch,
        top_layer_nb,
        net,
        nb_epoch=nb_epoch,
        top_layer_epochs=top_layer_epochs,
        all_layer_epochs=all_layer_epochs,
        use_pretrained=use_pretrained,
        optim=optim,
        init_lr=init_lr,
        top_layer_multiplier=top_layer_multiplier,
        all_layer_multiplier=all_layer_multiplier,
        es_patience=es_patience,
        lr_patience=lr_patience,
        auto_batch_balance=auto_batch_balance,
        pos_cls_weight=pos_cls_weight,
        neg_cls_weight=neg_cls_weight,
        nb_worker=nb_worker,
        weight_decay2=weight_decay2,
        bias_multiplier=bias_multiplier,
        hidden_dropout2=hidden_dropout2)

    # Training report.
    min_loss_locs, = np.where(loss_hist == min(loss_hist))
    best_val_loss = loss_hist[min_loss_locs[0]]
    best_val_accuracy = acc_hist[min_loss_locs[0]]
    print "\n==== Training summary ===="
    print "Minimum val loss achieved at epoch:", min_loss_locs[0] + 1
    print "Best val loss:", best_val_loss
    print "Best val accuracy:", best_val_accuracy

    if final_model != "NOSAVE":
        model.save(final_model)

    # ==== Predict on test set ==== #
    print "\n==== Predicting on test set ===="
    test_generator = test_imgen.flow_from_directory(
        test_dir,
        target_size=img_size,
        target_scale=img_scale,
        equalize_hist=equalize_hist,
        dup_3_channels=dup_3_channels,
        classes=class_list,
        class_mode='categorical',
        batch_size=batch_size,
        preprocess=preprocess_input,
        shuffle=False)
    print "Test samples =", test_generator.nb_sample
    print "Load saved best model:", best_model + '.',
    sys.stdout.flush()
    org_model.load_weights(best_model)
    print "Done."
    test_samples = test_generator.nb_sample
    #### DEBUG ####
    # test_samples = 10
    #### DEBUG ####
    test_res = model.evaluate_generator(
        test_generator,
        test_samples,
        nb_worker=nb_worker,
        pickle_safe=True if nb_worker > 1 else False)
    print "Evaluation result on test set:", test_res