def test_C2_watson_gamma_equals_gamma_watson(): scheme = wu_minn_hcp_acquisition_scheme() cylinder = cylinder_models.C2CylinderStejskalTannerApproximation() watsoncyl = distribute_models.SD1WatsonDistributed([cylinder]) gammawatsoncyl = distribute_models.DD1GammaDistributed( [watsoncyl], target_parameter='C2CylinderStejskalTannerApproximation_1_diameter') param_name = 'C2CylinderStejskalTannerApproximation_1_lambda_par' params1 = { 'SD1WatsonDistributed_1_' + param_name: 1.7e-9, 'DD1Gamma_1_alpha': 2., 'DD1Gamma_1_beta': 4e-6, 'SD1WatsonDistributed_1_SD1Watson_1_odi': 0.4, 'SD1WatsonDistributed_1_SD1Watson_1_mu': [0., 0.] } gammacyl = distribute_models.DD1GammaDistributed([cylinder]) watsongammacyl = distribute_models.SD1WatsonDistributed([gammacyl]) params2 = { 'DD1GammaDistributed_1_' + param_name: 1.7e-9, 'DD1GammaDistributed_1_DD1Gamma_1_alpha': 2., 'DD1GammaDistributed_1_DD1Gamma_1_beta': 4e-6, 'SD1Watson_1_odi': 0.4, 'SD1Watson_1_mu': [0., 0.] } assert_array_almost_equal(watsongammacyl(scheme, **params2), gammawatsoncyl(scheme, **params1), 5)
def test_C4_watson_gamma_equals_gamma_watson(): scheme = wu_minn_hcp_acquisition_scheme() cylinder = cylinder_models.C4CylinderGaussianPhaseApproximation() watsoncyl = distribute_models.SD1WatsonDistributed([cylinder]) gammawatsoncyl = distribute_models.DD1GammaDistributed( [watsoncyl], target_parameter='C4CylinderGaussianPhaseApproximation_1_diameter') param = 'SD1WatsonDistributed_1_C4CylinderGaussianPhaseApproximation' param += '_1_lambda_par' params1 = { param: 1.7e-9, 'DD1Gamma_1_alpha': 2., 'DD1Gamma_1_beta': 4e-6, 'SD1WatsonDistributed_1_SD1Watson_1_odi': 0.4, 'SD1WatsonDistributed_1_SD1Watson_1_mu': [0., 0.] } gammacyl = distribute_models.DD1GammaDistributed([cylinder]) watsongammacyl = distribute_models.SD1WatsonDistributed( [gammacyl], target_parameter='C4CylinderGaussianPhaseApproximation_1_mu') param = 'DD1GammaDistributed_1_C4CylinderGaussianPhaseApproximation' param += '_1_lambda_par' params2 = { param: 1.7e-9, 'DD1GammaDistributed_1_DD1Gamma_1_alpha': 2., 'DD1GammaDistributed_1_DD1Gamma_1_beta': 4e-6, 'SD1Watson_1_odi': 0.4, 'SD1Watson_1_mu': [0., 0.] } assert_array_almost_equal(watsongammacyl(scheme, **params2), gammawatsoncyl(scheme, **params1), 5)
def main(): # Plot Save Path base_plot_path = r'/nfs/masi/nathv/py_src_code_2020/dmipy_model_pictures' base_plot_path = os.path.normpath(base_plot_path) # Method Saving Paths base_save_path = r'/nfs/masi/nathv/miccai_2020/micro_methods_hcp_mini' base_save_path = os.path.normpath(base_save_path) # Create base saving path for Method # TODO The Method name can be made an argument later on method_name = 'AXCALIBER' # Base HCP Data Path base_data_path = r'/nfs/HCP/data' base_data_path = os.path.normpath(base_data_path) # Subject ID's list subj_ID_List = ['125525', '118225', '116726', '115825', '115017', '114823'] # TODO When needed loop here over the ID list for subj_ID in subj_ID_List: # Subject Save Path subj_save_path = os.path.join(base_save_path, subj_ID) if os.path.exists(subj_save_path) == False: os.mkdir(subj_save_path) # TODO For later the subject data, bval and bvec reading part can be put inside a function subj_data_path = os.path.join(base_data_path, subj_ID_List[0], 'T1w', 'Diffusion') # Read the Nifti file, bvals and bvecs subj_bvals = np.loadtxt(os.path.join(subj_data_path, 'bvals')) subj_bvecs = np.loadtxt(os.path.join(subj_data_path, 'bvecs')) all_bvals = subj_bvals * 1e6 all_bvecs = np.transpose(subj_bvecs) subj_Acq_Scheme = acquisition_scheme_from_bvalues(all_bvals, all_bvecs, delta=10.6 * 1e-3, Delta=43.1 * 1e-3, TE=89.5 * 1e-3) print(subj_Acq_Scheme.print_acquisition_info) print('Loading the Nifti Data ...') data_start_time = time.time() subj_babel_object = nib.load( os.path.join(subj_data_path, 'data.nii.gz')) subj_data = subj_babel_object.get_fdata() axial_slice_data = subj_data[58:60, 68:70, 60:62, :] mask_babel_object = nib.load( os.path.join(subj_data_path, 'nodif_brain_mask.nii.gz')) mask_data = mask_babel_object.get_fdata() axial_mask_slice_data = mask_data[58:60, 68:70, 60:62] data_end_time = time.time() data_time = np.int(np.round(data_end_time - data_start_time)) print('Data Loaded ... Time Taken: {}'.format(data_end_time - data_start_time)) print('The Data Dimensions are: {}'.format(subj_data.shape)) #### AxCaliber Begin #### ball = gaussian_models.G1Ball() cylinder = cylinder_models.C4CylinderGaussianPhaseApproximation() gamma_cylinder = distribute_models.DD1GammaDistributed( models=[cylinder]) axcaliber_gamma = modeling_framework.MultiCompartmentModel( models=[ball, gamma_cylinder]) axcaliber_gamma.set_fixed_parameter( 'DD1GammaDistributed_1_C4CylinderGaussianPhaseApproximation_1_lambda_par', 1.7e-9) axcaliber_gamma.set_fixed_parameter( 'DD1GammaDistributed_1_C4CylinderGaussianPhaseApproximation_1_mu', [0, 0]) print('Fitting the AxCaliber Model ...') fit_start_time = time.time() mcdmi_fit = axcaliber_gamma.fit(subj_Acq_Scheme, axial_slice_data, mask=axial_mask_slice_data, solver='mix', maxiter=100, use_parallel_processing=True, number_of_processors=32) fit_end_time = time.time() print('Model Fitting Completed ... Time Taken to fit: {}'.format( fit_end_time - fit_start_time)) fit_time = np.int(np.round(fit_end_time - fit_start_time)) fitted_parameters = mcdmi_fit.fitted_parameters # Get List of Estimated Parameter Names para_Names_list = [] for key, value in fitted_parameters.items(): para_Names_list.append(key) ### Nifti Saving Part # Create a directory per subject subj_method_save_path = os.path.join(subj_save_path, method_name) if os.path.exists(subj_method_save_path) == False: os.mkdir(subj_method_save_path) # Retrieve the affine from already Read Nifti file to form the header affine = subj_babel_object.affine # Loop over fitted parameters name list for each_fitted_parameter in para_Names_list: new_img = nib.Nifti1Image(fitted_parameters[each_fitted_parameter], affine) # Form the file path f_name = each_fitted_parameter + '.nii.gz' param_file_path = os.path.join(subj_method_save_path, f_name) nib.save(new_img, param_file_path) print('debug here') return None
bvalues = np.loadtxt(allBvalsNames[iMask]) # given in s/mm^2 bvalues_SI = bvalues * 1e6 acq_scheme = acquisition_scheme_from_bvalues(bvalues_SI, gradient_directions_normalized, delta, Delta) # gtab_dipy = gradient_table(bvalues, gradient_directions, big_delta=Delta, small_delta=delta, atol=3e-2) # acq_scheme = gtab_dipy2mipy(gtab_dipy) acq_scheme.print_acquisition_info dwi_nii = nib.load(allDwiNames[iMask]) dwi = dwi_nii.get_data() mask = nib.load(allMaskNames[iMask]).get_data() ball = gaussian_models.G1Ball() cylinder = cylinder_models.C4CylinderGaussianPhaseApproximation() gamma_cylinder = distribute_models.DD1GammaDistributed(models=[cylinder]) axcaliber_gamma = MultiCompartmentModel(models=[ball, gamma_cylinder]) print axcaliber_gamma.parameter_cardinality axcaliber_gamma.set_fixed_parameter('DD1GammaDistributed_1_C4CylinderGaussianPhaseApproximation_1_lambda_par', 1.7e-9) axcaliber_gamma.set_fixed_parameter('DD1GammaDistributed_1_C4CylinderGaussianPhaseApproximation_1_mu', [0, 0]) axcaliber_gamma_fit = axcaliber_gamma.fit(acq_scheme, dwi, mask = mask, solver='mix', maxiter=100) fitted_parameters = axcaliber_gamma_fit.fitted_parameters hdr = dwi_nii.header # create output folder dir_sub = os.path.join(directory, "%03d" % iMask)