示例#1
0
    def __call__(self, n, **kwargs):
        r""" The Watson spherical distribution model.

        Parameters
        ----------
        n : array of shape(3) or array of shape(N x 3),
            sampled orientations of the Watson distribution.

        Returns
        -------
        Bn: float or array of shape(N),
            Probability density at orientations n, given mu and kappa.
        """
        odi = kwargs.get('odi', self.odi)
        beta_fraction = kwargs.get('beta_fraction', self.beta_fraction)
        mu = kwargs.get('mu', self.mu)
        psi = kwargs.get('psi', self.psi)

        kappa = odi2kappa(odi)
        beta = beta_fraction * kappa

        mu_cart = utils.unitsphere2cart_1d(mu)

        R = utils.rotation_matrix_100_to_theta_phi_psi(mu[0], mu[1], psi)
        mu_beta = R.dot(np.r_[0., 1., 0.])
        numerator = _probability_bingham(kappa, beta, mu_cart, mu_beta, n)
        denominator = 4 * np.pi * self._get_normalization(kappa, beta)
        Bn = numerator / denominator
        return Bn
示例#2
0
    def __call__(self, n, **kwargs):
        r""" The Watson spherical distribution model [1, 2].

        Parameters
        ----------
        n : array of shape(3) or array of shape(N x 3),
            sampled orientations of the Watson distribution.

        Returns
        -------
        Wn: float or array of shape(N),
            Probability density at orientations n, given mu and kappa.
        """
        odi = kwargs.get('odi', self.odi)
        mu = kwargs.get('mu', self.mu)

        kappa = odi2kappa(odi)
        mu_cart = utils.unitsphere2cart_1d(mu)
        numerator = np.exp(kappa * np.dot(n, mu_cart)**2)
        denominator = 4 * np.pi * special.hyp1f1(0.5, 1.5, kappa)
        Wn = numerator / denominator
        return Wn