cell_size=args.mem_size, sparse_reads=args.sparse_reads, temporal_reads=args.temporal_reads, read_heads=args.read_heads, gpu_id=args.cuda, debug=args.visdom, batch_first=True, independent_linears=False) elif args.memory_type == 'sam': rnn = SAM(input_size=args.input_size, hidden_size=args.nhid, rnn_type=args.rnn_type, num_layers=args.nlayer, num_hidden_layers=args.nhlayer, dropout=args.dropout, nr_cells=args.mem_slot, cell_size=args.mem_size, sparse_reads=args.sparse_reads, read_heads=args.read_heads, gpu_id=args.cuda, debug=args.visdom, batch_first=True, independent_linears=False) else: raise Exception('Not recognized type of memory') if args.cuda != -1: rnn = rnn.cuda(args.cuda) print(rnn) last_save_losses = []
controller_size=args.lstm_size, memory_units=128, memory_unit_size=20, num_heads=1)#task_params['num_heads']) elif args.model=='dnc': model = DNC(input_size= input_size, output_size=output_size, hidden_size=args.lstm_size, nr_cells=128, cell_size=20, read_heads=1)#task_params['num_heads']) model.init_param() elif args.model=='sam': model = SAM(input_size= input_size, output_size=output_size, hidden_size=args.lstm_size, nr_cells=128, cell_size=20, read_heads=1)#read_heads=4???#task_params['num_heads']) model.init_param() elif args.model=='lstm': marnn_config=args print('marnn_config:\n',marnn_config) model = MARNN(marnn_config,input_size=input_size, num_units=marnn_config.lstm_size, output_size=output_size, use_zoneout=False, use_ln=False) else: has_tau=1 marnn_config=args print('marnn_config:\n',marnn_config)