示例#1
0
文件: model.py 项目: nQuantums/tips
def dqn_batchnorm_prelu_no_rnd_init(state_shape,
                                    action_dim,
                                    show_plot_name=None,
                                    hidden_size=32):
    """DDQNモデルを生成する.

	Args:
		state_shape: バッチを除いた入力値形状 tuple.
		action_dim: アクション数、バッチを除いた出力値の要素数となる.
		show_plot_name: 変換途中データのプロット表示するならプロット名を、それ以外は None.
		hidden_size: 中間畳み込みレイヤのCH数.

	Returns:
		モデル.
	"""
    model = dnn.Root()

    if not plot_enabled:
        show_plot_name = None
    if show_plot_name:
        fig = plt.figure()
        ax_cnv1 = fig.add_subplot(2, 3, 1)
        ax_cnv1 = fig.add_subplot(2, 3, 1)
        ax_cnv2 = fig.add_subplot(2, 3, 2)
        ax_cnv3 = fig.add_subplot(2, 3, 3)
        ax_dense_val = fig.add_subplot(2, 3, 4)
        ax_dense_adv = fig.add_subplot(2, 3, 5)
        ax_action = fig.add_subplot(2, 3, 6)
        x_data = np.arange(action_dim)

    with model as m:
        c = m.nop()
        c = c.conv2d(state_shape[0], hidden_size, 8,
                     4).batchnorm2d(hidden_size).prelu().plot_img(
                         show_plot_name, 0, ax_cnv1)
        c = c.conv2d(hidden_size, hidden_size * 2, 4,
                     2).batchnorm2d(hidden_size * 2).prelu().plot_img(
                         show_plot_name, 0, ax_cnv2)
        c = c.conv2d(hidden_size * 2, hidden_size * 2, 3,
                     1).batchnorm2d(hidden_size * 2).prelu().plot_img(
                         show_plot_name, 0, ax_cnv3)
        f = c.flatten()

        fc = f.calc_output_shape(state_shape)

        val = f.dense(fc, 512).prelu().plot_dense(show_plot_name, 0,
                                                  ax_dense_val)
        val = val.dense(512, 1)
        adv = f.dense(fc, 512).prelu().plot_dense(show_plot_name, 0,
                                                  ax_dense_adv)
        adv = adv.dense(512, action_dim)
        ave = adv.mean(1, keepdims=True)

        m.gate('merge', (lambda o, val, adv, ave: val + adv - ave), val, adv,
               ave).plot_action(show_plot_name, 0, ax_action, x_data)

    model.build()

    return model
示例#2
0
    fc = hidden_size * 704

    with dnn.Model(chainer.optimizers.Adam()) as m:
        flat = m\
        .conv2d(history_size, hidden_size, 8, 4).relu()\
        .conv2d(hidden_size, hidden_size * 2, 4, 2).relu()\
        .conv2d(hidden_size * 2, hidden_size * 2, 3, 1).relu()\
        .reshape((1, fc))

        a = flat.dense(fc, 512).relu().dense(512, action_size)
        v = flat.dense(fc, 512).relu().dense(512, 1).tile((1, action_size))
        av = a.average(1, keepdims=True).tile((1, action_size))

        m.gate('merge', (lambda a, v, av, o: a + v - av), a, v, av)
        m.build('dqn_prediction.py', 'dqn')
        return m


m = dqn(4, 32, 6)

with open("dqn_model.dot", mode='w') as f:
    f.write(m.dot_code)

ch = 4
w = 210
h = 160
x = Variable(np.arange(ch * w * h, dtype=np.float32).reshape((1, ch, h, w)))
x = m(x)

print(x)
示例#3
0
文件: model.py 项目: nQuantums/tips
def dqn_prelu_long_dense(state_shape,
                         action_dim,
                         show_plot_name=None,
                         hidden_size=32):
    """DDQNモデルを生成する.

	Args:
		state_shape: バッチを除いた入力値形状 tuple.
		action_dim: アクション数、バッチを除いた出力値の要素数となる.
		show_plot_name: 変換途中データのプロット表示するならプロット名を、それ以外は None.
		hidden_size: 中間畳み込みレイヤのCH数.

	Returns:
		モデル.
	"""
    model = dnn.Root()

    if not plot_enabled:
        show_plot_name = None
    if show_plot_name:
        fig = plt.figure()
        fig.suptitle(show_plot_name, fontsize=12)
        ax_cnv1 = fig.add_subplot(2, 3, 1)
        ax_cnv1 = fig.add_subplot(2, 3, 1)
        ax_cnv2 = fig.add_subplot(2, 3, 2)
        ax_cnv3 = fig.add_subplot(2, 3, 3)
        ax_dense_val = fig.add_subplot(2, 3, 4)
        ax_dense_adv = fig.add_subplot(2, 3, 5)
        ax_action = fig.add_subplot(2, 3, 6)
        x_data = np.arange(action_dim)
    else:
        ax_cnv1 = None
        ax_cnv1 = None
        ax_cnv2 = None
        ax_cnv3 = None
        ax_dense_val = None
        ax_dense_adv = None
        ax_action = None
        x_data = None

    with model as m:
        c = m.conv2d(state_shape[0], hidden_size, 8,
                     4).prelu().plot_img('conv 1', 0, ax_cnv1)
        c = c.conv2d(hidden_size, hidden_size * 2, 4,
                     2).prelu().plot_img('conv 2', 0, ax_cnv2)
        c = c.conv2d(hidden_size * 2, hidden_size * 2, 3,
                     1).prelu().plot_img('conv 3', 0, ax_cnv3)
        f = c.flatten()

        fc = f.calc_output_shape(state_shape)

        val = f.dense(fc, 512).prelu().dense(512, 512).prelu().plot_dense(
            'dense val', 0, ax_dense_val)
        val = val.dense(512, 1)
        adv = f.dense(fc, 512).prelu().dense(512, 512).prelu().plot_dense(
            'dense adv', 0, ax_dense_adv)
        adv = adv.dense(512, action_dim)
        ave = adv.mean(1, keepdims=True)

        m.gate('merge', (lambda o, val, adv, ave: val + adv - ave), val, adv,
               ave).plot_action('action', 0, ax_action, x_data)

    for w in model.get_weights():
        nn.init.normal_(w, 0, 0.02)

    model.build()

    return model