示例#1
0
文件: tests.py 项目: jtwiefel/docks
    def test_one_char_phonemes(self):

        english_sentence_list = "./pizzeria.sentences.txt"

        new_lm_folder = "./pizzeria"
        #generate n-gram files
        from docks.docks import ngram_generation
        ngram_generation.generate_ngram_language_model(
            training_sentences_file=english_sentence_list,
            n_gram_order=2,
            new_lm_folder=new_lm_folder)

        from docks.docks.ngram_postprocessor import NgramPostprocessor
        ngram_postprocessor = NgramPostprocessor(lm_folder_path=new_lm_folder,
                                                 phonemes=True)
        #ngram initializiation is non blocking so wait some time
        #import time
        #time.sleep(5)

        test_sentence = [
            "B", "R", "IH", "NG", " ", "M", "IY", " ", "AH", " ", "HH", "AE",
            "M", " ", "P", "IY", "T", "Z", "AH"
        ]

        from asr_nlp_tools.utils.phoneme_converter import convert_arpabet_to_one_char
        test_sentence = convert_arpabet_to_one_char(test_sentence)

        hypothesis = ngram_postprocessor.recognize(test_sentence)
        self.assertEqual(hypothesis, "bring me a ham pizza")
示例#2
0
文件: tests.py 项目: jtwiefel/docks
    def atest_string_input_to_phoneme_model(self):

        english_sentence_list = "./pizzeria.sentences.txt"

        new_lm_folder = "./pizzeria"
        #generate n-gram files
        from docks.docks import ngram_generation
        ngram_generation.generate_ngram_language_model(
            training_sentences_file=english_sentence_list,
            n_gram_order=2,
            new_lm_folder=new_lm_folder)

        from docks.docks.ngram_postprocessor import NgramPostprocessor
        ngram_postprocessor = NgramPostprocessor(lm_folder_path=new_lm_folder,
                                                 phonemes=True)
        #ngram initializiation is non blocking so wait some time
        #import time
        #time.sleep(5)

        test_sentence = "pleas bring mee a han pizza"
        self.assertRaises(TypeError, ngram_postprocessor.recognize,
                          test_sentence)
示例#3
0
文件: tests.py 项目: jtwiefel/docks
    def atest_string(self):

        english_sentence_list = "./pizzeria.sentences.txt"

        new_lm_folder = "./pizzeria"
        #generate n-gram files
        from docks.docks import ngram_generation
        ngram_generation.generate_ngram_language_model(
            training_sentences_file=english_sentence_list,
            n_gram_order=2,
            new_lm_folder=new_lm_folder)

        from docks.docks.ngram_postprocessor import NgramPostprocessor
        ngram_postprocessor = NgramPostprocessor(lm_folder_path=new_lm_folder,
                                                 phonemes=False)
        #ngram initializiation is non blocking so wait some time
        #import time
        #time.sleep(5)

        test_sentence = "pleas bring mee a han pizza"
        hypothesis = ngram_postprocessor.recognize(test_sentence)

        self.assertEqual(hypothesis, "please bring me a ham pizza")
示例#4
0
from docks.docks import suppress_alsa_warnings
import speech_recognition as sr
from pprint import pprint

if __name__ == "__main__":
    os.system('tput reset')
    terminal_name = 'DOCKS EXAMPLE'
    sys.stdout.write("\x1b]2;" + terminal_name + "\x07")

    english_sentence_list = "./pizzeria.sentences.txt"

    new_lm_folder = "./pizzeria"
    #generate n-gram files
    from docks.docks import ngram_generation
    ngram_generation.generate_ngram_language_model(
        training_sentences_file=english_sentence_list,
        n_gram_order=3,
        new_lm_folder=new_lm_folder)

    from docks.docks.ngram_postprocessor import NgramPostprocessor
    ngram_postprocessor = NgramPostprocessor(lm_folder_path=new_lm_folder)

    #ngram initializiation is non blocking so wait some time
    import time
    time.sleep(5)

    # obtain audio from the microphone
    google_recognizer = sr.Recognizer()

    #adjust the microphone to background noise
    with sr.Microphone() as source:
        google_recognizer.adjust_for_ambient_noise(source)