def main(): parser = argparse.ArgumentParser("Train our ELMo model on SQuAD") parser.add_argument("loss_mode", choices=['default', 'confidence']) parser.add_argument("output_dir") parser.add_argument("--dim", type=int, default=90) parser.add_argument("--l2", type=float, default=0) parser.add_argument("--mode", choices=["input", "output", "both", "none"], default="both") parser.add_argument("--top_layer_only", action="store_true") parser.add_argument("--no-tfidf", action='store_true', help="Don't add TF-IDF negative examples") args = parser.parse_args() out = args.output_dir + "-" + datetime.now().strftime("%m%d-%H%M%S") dim = args.dim recurrent_layer = CudnnGru(dim, w_init=TruncatedNormal(stddev=0.05)) if args.loss_mode == 'default': n_epochs = 24 answer_encoder = SingleSpanAnswerEncoder() predictor = BoundsPredictor( ChainBiMapper(first_layer=recurrent_layer, second_layer=recurrent_layer)) batcher = ClusteredBatcher(45, ContextLenKey(), False, False) data = DocumentQaTrainingData(SquadCorpus(), None, batcher, batcher) elif args.loss_mode == 'confidence': if args.no_tfidf: prepro = SquadDefault() n_epochs = 15 else: prepro = SquadTfIdfRanker(NltkPlusStopWords(True), 4, True) n_epochs = 50 answer_encoder = DenseMultiSpanAnswerEncoder() predictor = ConfidencePredictor(ChainBiMapper( first_layer=recurrent_layer, second_layer=recurrent_layer, ), AttentionEncoder(), FullyConnected(80, activation="tanh"), aggregate="sum") eval_dataset = RandomParagraphSetDatasetBuilder( 100, 'flatten', True, 0) train_batching = ClusteredBatcher(45, ContextLenBucketedKey(3), True, False) data = PreprocessedData(SquadCorpus(), prepro, StratifyParagraphsBuilder(train_batching, 1), eval_dataset, eval_on_verified=False) data.preprocess(1) params = trainer.TrainParams(trainer.SerializableOptimizer( "Adadelta", dict(learning_rate=1.0)), ema=0.999, max_checkpoints_to_keep=2, async_encoding=10, num_epochs=n_epochs, log_period=30, eval_period=1200, save_period=1200, best_weights=("dev", "b17/text-f1"), eval_samples=dict(dev=None, train=8000)) lm_reduce = MapperSeq( ElmoLayer(args.l2, layer_norm=False, top_layer_only=args.top_layer_only), DropoutLayer(0.5), ) model = AttentionWithElmo( encoder=DocumentAndQuestionEncoder(answer_encoder), lm_model=SquadContextConcatSkip(), append_before_atten=(args.mode == "both" or args.mode == "output"), append_embed=(args.mode == "both" or args.mode == "input"), max_batch_size=128, word_embed=FixedWordEmbedder(vec_name="glove.840B.300d", word_vec_init_scale=0, learn_unk=False, cpu=True), char_embed=CharWordEmbedder(LearnedCharEmbedder(word_size_th=14, char_th=49, char_dim=20, init_scale=0.05, force_cpu=True), MaxPool(Conv1d(100, 5, 0.8)), shared_parameters=True), embed_mapper=SequenceMapperSeq( VariationalDropoutLayer(0.8), recurrent_layer, VariationalDropoutLayer(0.8), ), lm_reduce=None, lm_reduce_shared=lm_reduce, per_sentence=False, memory_builder=NullBiMapper(), attention=BiAttention(TriLinear(bias=True), True), match_encoder=SequenceMapperSeq( FullyConnected(dim * 2, activation="relu"), ResidualLayer( SequenceMapperSeq( VariationalDropoutLayer(0.8), recurrent_layer, VariationalDropoutLayer(0.8), StaticAttentionSelf(TriLinear(bias=True), ConcatWithProduct()), FullyConnected(dim * 2, activation="relu"), )), VariationalDropoutLayer(0.8)), predictor=predictor) with open(__file__, "r") as f: notes = f.read() notes = str(sorted(args.__dict__.items(), key=lambda x: x[0])) + "\n" + notes trainer.start_training( data, model, params, [LossEvaluator(), SpanEvaluator(bound=[17], text_eval="squad")], ModelDir(out), notes)
def main(): """ A close-as-possible impelemntation of BiDaF, its based on the `dev` tensorflow 1.1 branch of Ming's repo which, in particular, uses Adam not Adadelta. I was not able to replicate the results in paper using Adadelta, but with Adam i was able to get to 78.0 F1 on the dev set with this scripts. I believe this approach is an exact reproduction up the code in the repo, up to initializations. Notes: Exponential Moving Average is very important, as is early stopping. This is also in particualr best run on a GPU due to the large number of parameters and batch size involved. """ out = get_output_name_from_cli() train_params = TrainParams(SerializableOptimizer( "Adam", dict(learning_rate=0.001)), num_epochs=12, ema=0.999, async_encoding=10, log_period=30, eval_period=1000, save_period=1000, eval_samples=dict(dev=None, train=8000)) # recurrent_layer = BiRecurrentMapper(LstmCellSpec(100, keep_probs=0.8)) # recurrent_layer = FusedLstm() recurrent_layer = SequenceMapperSeq(DropoutLayer(0.8), CudnnLstm(100)) model = Attention( encoder=DocumentAndQuestionEncoder(SingleSpanAnswerEncoder()), word_embed=FixedWordEmbedder(vec_name="glove.6B.100d", word_vec_init_scale=0, learn_unk=False), char_embed=CharWordEmbedder(embedder=LearnedCharEmbedder(16, 49, 8), layer=ReduceLayer("max", Conv1d(100, 5, 0.8), mask=False), shared_parameters=True), word_embed_layer=None, embed_mapper=SequenceMapperSeq(HighwayLayer(activation="relu"), HighwayLayer(activation="relu"), recurrent_layer), preprocess=None, question_mapper=None, context_mapper=None, memory_builder=NullBiMapper(), attention=BiAttention(TriLinear(bias=True), True), match_encoder=NullMapper(), predictor=BoundsPredictor( ChainConcat(start_layer=SequenceMapperSeq(recurrent_layer, recurrent_layer), end_layer=recurrent_layer)), ) with open(__file__, "r") as f: notes = f.read() eval = [LossEvaluator(), SpanEvaluator(bound=[17], text_eval="squad")] corpus = SquadCorpus() train_batching = ClusteredBatcher(60, ContextLenBucketedKey(3), True, False) eval_batching = ClusteredBatcher(60, ContextLenKey(), False, False) data = DocumentQaTrainingData(corpus, None, train_batching, eval_batching) trainer.start_training(data, model, train_params, eval, model_dir.ModelDir(out), notes)
def main(): parser = argparse.ArgumentParser( description='Train a model on document-level SQuAD') parser.add_argument( 'mode', choices=["paragraph", "confidence", "shared-norm", "merge", "sigmoid"]) parser.add_argument("name", help="Output directory") args = parser.parse_args() mode = args.mode out = args.name + "-" + datetime.now().strftime("%m%d-%H%M%S") corpus = SquadCorpus() if mode == "merge": # Adds paragraph start tokens, since we will be concatenating paragraphs together pre = WithIndicators(True, para_tokens=False, doc_start_token=False) else: pre = None model = get_model(50, 100, args.mode, pre) if mode == "paragraph": # Run in the "standard" known-paragraph setting if model.preprocessor is not None: raise NotImplementedError() n_epochs = 26 train_batching = ClusteredBatcher(45, ContextLenBucketedKey(3), True, False) eval_batching = ClusteredBatcher(45, ContextLenKey(), False, False) data = DocumentQaTrainingData(corpus, None, train_batching, eval_batching) eval = [LossEvaluator(), SpanEvaluator(bound=[17], text_eval="squad")] else: eval_set_mode = { "confidence": "flatten", "sigmoid": "flatten", "shared-norm": "group", "merge": "merge" }[mode] eval_dataset = RandomParagraphSetDatasetBuilder( 100, eval_set_mode, True, 0) if mode == "confidence" or mode == "sigmoid": if mode == "sigmoid": # needs to be trained for a really long time for reasons unknown, even this might be too small n_epochs = 100 else: n_epochs = 50 # more epochs since we only "see" the label very other epoch-osh train_batching = ClusteredBatcher(45, ContextLenBucketedKey(3), True, False) data = PreprocessedData( SquadCorpus(), SquadTfIdfRanker(NltkPlusStopWords(True), 4, True, model.preprocessor), StratifyParagraphsBuilder(train_batching, 1), eval_dataset, eval_on_verified=False, ) else: n_epochs = 26 data = PreprocessedData( SquadCorpus(), SquadTfIdfRanker(NltkPlusStopWords(True), 4, True, model.preprocessor), StratifyParagraphSetsBuilder(25, args.mode == "merge", True, 1), eval_dataset, eval_on_verified=False, ) eval = [LossEvaluator(), MultiParagraphSpanEvaluator(17, "squad")] data.preprocess(1) with open(__file__, "r") as f: notes = f.read() notes = args.mode + "\n" + notes trainer.start_training(data, model, train_params(n_epochs), eval, model_dir.ModelDir(out), notes)
def main(): parser = argparse.ArgumentParser("Train rejection model on SQuAD") parser.add_argument("--corpus_dir", type=str, default="~/data/document-qa") parser.add_argument("--output_dir", type=str, default="~/model/document-qa/squad") parser.add_argument("--lm_dir", type=str, default="~/data/lm") parser.add_argument("--exp_id", type=str, default="rejection") parser.add_argument("--lr", type=float, default=0.5) parser.add_argument("--epoch", type=int, default=20) parser.add_argument("--dim", type=int, default=100) parser.add_argument("--batch_size", type=int, default=45) parser.add_argument("--l2", type=float, default=0) parser.add_argument("--mode", choices=["input", "output", "both", "none"], default="both") parser.add_argument("--top_layer_only", action="store_true") args = parser.parse_args() print("Arguments : ", args) out = args.output_dir + "_" + args.exp_id + "_lr" + str( args.lr) + "-" + datetime.now().strftime("%m%d-%H%M%S") dim = args.dim batch_size = args.batch_size out = expanduser(out) lm_dir = expanduser(args.lm_dir) corpus_dir = expanduser(args.corpus_dir) print("Make global recurrent_layer...") recurrent_layer = CudnnGru( dim, w_init=tf.keras.initializers.TruncatedNormal(stddev=0.05)) params = trainer.TrainParams(trainer.SerializableOptimizer( "Adadelta", dict(learning_rate=args.lr)), ema=0.999, max_checkpoints_to_keep=2, async_encoding=10, num_epochs=args.epoch, log_period=30, eval_period=1200, save_period=1200, best_weights=("dev", "b17/text-f1"), eval_samples=dict(dev=None, train=8000)) lm_reduce = MapperSeq( ElmoLayer(args.l2, layer_norm=False, top_layer_only=args.top_layer_only), DropoutLayer(0.5), ) model = AttentionWithElmo( encoder=DocumentAndQuestionEncoder(SingleSpanAnswerEncoder()), lm_model=SquadContextConcatSkip(lm_dir=lm_dir), append_before_atten=(args.mode == "both" or args.mode == "output"), append_embed=(args.mode == "both" or args.mode == "input"), max_batch_size=128, word_embed=FixedWordEmbedder(vec_name="glove.840B.300d", word_vec_init_scale=0, learn_unk=False, cpu=True), char_embed=CharWordEmbedder(LearnedCharEmbedder(word_size_th=14, char_th=49, char_dim=20, init_scale=0.05, force_cpu=True), MaxPool(Conv1d(100, 5, 0.8)), shared_parameters=True), embed_mapper=SequenceMapperSeq( VariationalDropoutLayer(0.8), recurrent_layer, VariationalDropoutLayer(0.8), ), lm_reduce=None, lm_reduce_shared=lm_reduce, per_sentence=False, memory_builder=NullBiMapper(), attention=BiAttention(TriLinear(bias=True), True), match_encoder=SequenceMapperSeq( FullyConnected(dim * 2, activation="relu"), ResidualLayer( SequenceMapperSeq( VariationalDropoutLayer(0.8), recurrent_layer, VariationalDropoutLayer(0.8), StaticAttentionSelf(TriLinear(bias=True), ConcatWithProduct()), FullyConnected(dim * 2, activation="relu"), )), VariationalDropoutLayer(0.8)), predictor=BoundsPredictor( ChainBiMapper(first_layer=recurrent_layer, second_layer=recurrent_layer))) batcher = ClusteredBatcher(batch_size, ContextLenKey(), False, False) data = DocumentQaTrainingData(SquadCorpus(corpus_dir), None, batcher, batcher) with open(__file__, "r") as f: notes = f.read() notes = str(sorted(args.__dict__.items(), key=lambda x: x[0])) + "\n" + notes trainer.start_training( data, model, params, [LossEvaluator(), SpanEvaluator(bound=[17], text_eval="squad")], ModelDir(out), notes)