def project(v, V=None, bcs=None, mesh=None, function=None, solver_type="lu", preconditioner_type="default", form_compiler_parameters=None): """Return projection of given expression *v* onto the finite element space *V*. *Arguments* v a :py:class:`Function <dolfin.functions.function.Function>` or an :py:class:`Expression <dolfin.functions.expression.Expression>` bcs Optional argument :py:class:`list of DirichletBC <dolfin.fem.bcs.DirichletBC>` V Optional argument :py:class:`FunctionSpace <dolfin.functions.functionspace.FunctionSpace>` mesh Optional argument :py:class:`mesh <dolfin.cpp.Mesh>`. solver_type see :py:func:`solve <dolfin.fem.solving.solve>` for options. preconditioner_type see :py:func:`solve <dolfin.fem.solving.solve>` for options. form_compiler_parameters see :py:class:`Parameters <dolfin.cpp.Parameters>` for more information. *Example of usage* .. code-block:: python v = Expression("sin(pi*x[0])") V = FunctionSpace(mesh, "Lagrange", 1) Pv = project(v, V) This is useful for post-processing functions or expressions which are not readily handled by visualization tools (such as for example discontinuous functions). """ # Try figuring out a function space if not specified if V is None: # Create function space based on Expression element if trying # to project an Expression if isinstance(v, dolfin.function.expression.Expression): if mesh is not None and isinstance(mesh, cpp.mesh.Mesh): V = FunctionSpace(mesh, v.ufl_element()) # else: # cpp.dolfin_error("projection.py", # "perform projection", # "Expected a mesh when projecting an Expression") else: # Otherwise try extracting function space from expression V = _extract_function_space(v, mesh) # Projection into a MultiMeshFunctionSpace if isinstance(V, MultiMeshFunctionSpace): # Create the measuresum of uncut and cut-cells dX = ufl.dx() + ufl.dC() # Define variational problem for projection w = TestFunction(V) Pv = TrialFunction(V) a = ufl.inner(w, Pv) * dX L = ufl.inner(w, v) * dX # Assemble linear system A = assemble_multimesh(a, form_compiler_parameters=form_compiler_parameters) b = assemble_multimesh(L, form_compiler_parameters=form_compiler_parameters) # Solve linear system for projection if function is None: function = MultiMeshFunction(V) cpp.la.solve(A, function.vector(), b, solver_type, preconditioner_type) return function # Ensure we have a mesh and attach to measure if mesh is None: mesh = V.mesh() dx = ufl.dx(mesh) # Define variational problem for projection w = TestFunction(V) Pv = TrialFunction(V) a = ufl.inner(w, Pv) * dx L = ufl.inner(w, v) * dx # Assemble linear system A, b = assemble_system(a, L, bcs=bcs, form_compiler_parameters=form_compiler_parameters) # Solve linear system for projection if function is None: function = Function(V) cpp.la.solve(A, function.vector(), b, solver_type, preconditioner_type) return function
def project(v, V=None, func_degree=None, bcs=None, mesh=None, function=None, solver_type="lu", preconditioner_type="default", form_compiler_parameters=None): """ This function is a modification of FEniCS's built-in project function that adopts the :math:`r^2dr` measure as opposed to the standard Cartesian :math:`dx` measure. For documentation and usage, see the `original module <https://bitbucket.org/fenics-project/dolfin/src/master/python/dolfin/fem/projection.py>`_. .. note:: Note the extra argument func_degree: this is used to interpolate the :math:`r^2` Expression to the same degree as used in the definition of the Trial and Test function spaces. """ # Try figuring out a function space if not specified if V is None: # Create function space based on Expression element if trying # to project an Expression if isinstance(v, Expression): # FIXME: Add handling of cpp.MultiMesh if mesh is not None and isinstance(mesh, cpp.mesh.Mesh): V = FunctionSpace(mesh, v.ufl_element()) # else: # cpp.dolfin_error("projection.py", # "perform projection", # "Expected a mesh when projecting an Expression") else: # Otherwise try extracting function space from expression V = _extract_function_space(v, mesh) # Ensure we have a mesh and attach to measure if mesh is None: mesh = V.mesh() dx = ufl.dx(mesh) # Define variational problem for projection # DS: HERE IS WHERE I MODIFY r2 = Expression('pow(x[0],2)', degree=func_degree) w = TestFunction(V) Pv = TrialFunction(V) a = ufl.inner(w, Pv) * r2 * dx L = ufl.inner(w, v) * r2 * dx # Assemble linear system A, b = assemble_system(a, L, bcs=bcs, form_compiler_parameters=form_compiler_parameters) # Solve linear system for projection if function is None: function = Function(V) cpp.la.solve(A, function.vector(), b, solver_type, preconditioner_type) return function