示例#1
0
u = w.sub(0).collapse()
p = w.sub(1).collapse()

# We can calculate the :math:`L^2` norms of u and p as follows::

print("Norm of velocity coefficient vector: %.15g" % u.vector().norm())
print("Norm of pressure coefficient vector: %.15g" % p.vector().norm())

# Check pressure norm
pnorm = p.vector().norm()
assert np.isclose(pnorm, 4147.69457577)

# Finally, we can save and plot the solutions::

# Save solution in XDMF format
with XDMFFile(MPI.comm_world, "velocity.xdmf") as ufile_xdmf:
    ufile_xdmf.write(u)

with XDMFFile(MPI.comm_world, "pressure.xdmf") as pfile_xdmf:
    pfile_xdmf.write(p)

# Plot solution
plt.figure()
plot(u, title="velocity")

# plt.figure()
plot(p, title="pressure" + str(MPI.rank(mesh.mpi_comm())))

# Display plots
plt.show()
import os, matplotlib
if 'DISPLAY' not in os.environ:
    matplotlib.use('agg')

from dolfin import *
from dolfin.plotting import plot
import matplotlib.pyplot as plt

# Create mesh and define function spaces
mesh = UnitSquareMesh(MPI.comm_world, 64, 64)
P1 = FunctionSpace(mesh, "CG", 1)

# Define function
v = Expression("sin(10.0*x[0])*sin(10.0*x[1])", degree=2)

# Compute projection (L2-projection)
Pv = project(v, V=P1)

# Compute interpolation (evaluating dofs)
PIv = Function(P1)
PIv.interpolate(v)

# Plot functions
plt.figure()
plot(v, mesh=mesh, title="v")
plt.figure()
plot(Pv, title="Pv")
plt.figure()
plot(PIv, title="PI v")
plt.show()
示例#3
0
class DirichletBoundary(SubDomain):
    def inside(self, x, on_boundary):
        return numpy.logical_and(x[:, 0] < DOLFIN_EPS, on_boundary)


# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Expression("9.0*pi*pi*sin(3.0*pi*x[0])", degree=2)
g = Expression("3.0*pi*cos(3.0*pi*x[0])", degree=2)

a = dot(grad(u), grad(v)) * dx
L = f * v * dx + g * v * ds

# Define boundary condition
u0 = Constant(0.0)
bc = DirichletBC(V, u0, DirichletBoundary())

# Compute solution
u = Function(V)
solve(a == L, u, bc)

# Save solution to file
file = XDMFFile(MPI.comm_world, "poisson.xdmf")
file.write(u)

# Plot solution
plot(u)
plt.savefig('plot.pdf')
plt.show()
示例#4
0
import matplotlib.pyplot as plt

# Create mesh and define function spaces
mesh0 = UnitSquareMesh(MPI.comm_world, 16, 16)
mesh1 = UnitSquareMesh(MPI.comm_world, 64, 64)

# Create expression on P3
u0 = Expression("sin(10.0*x[0])*sin(10.0*x[1])", degree=3)

# Define projection space
P1 = FunctionSpace(mesh1, "CG", 1)

# Define projection variation problem
v = TestFunction(P1)
u1 = TrialFunction(P1)
a = v * u1 * dx
L = v * u0 * dx

# Compute solution
u1 = Function(P1)
solve(a == L, u1)

# Plot functions
plt.figure()
plot(u0, mesh=mesh0, title="u0")
plt.savefig("plot0.pdf")
plt.figure()
plot(u1, title="u1")
plt.savefig("plot1.pdf")
plt.show()
from dolfin.plotting import plot

# Form compiler options
# parameters["form_compiler"]["optimize"]     = True
# parameters["form_compiler"]["cpp_optimize"] = True

n = 100
eps = 1e-8

mesh = IntervalMesh.create(MPI.comm_world, n, [-2.0, +2.0],
                           cpp.mesh.GhostMode.none)
mesh.geometry.coord_mapping = dolfin.fem.create_coordinate_map(mesh)

x = SpatialCoordinate(mesh)[0]

plot(cos(x), title='cos', mesh=mesh)
plot(sin(x), title='sin', mesh=mesh)
plot(tan(x), title='tan', mesh=mesh)

mesh = IntervalMesh.create(MPI.comm_world, n, [0.0 + eps, 1.0 - eps],
                           cpp.mesh.GhostMode.none)
mesh.geometry.coord_mapping = dolfin.fem.create_coordinate_map(mesh)

x = SpatialCoordinate(mesh)[0]

plt.figure()
plot(acos(x), title='acos', mesh=mesh)
plt.figure()
plot(asin(x), title='asin', mesh=mesh)
plt.figure()
plot(atan(x), title='atan', mesh=mesh)