示例#1
0
def test_sub_constant_bc(mesh_factory):
    """Test that setting a dirichletbc with on a component of a vector
    valued function yields the same result as setting it with a
    function"""
    func, args = mesh_factory
    mesh = func(*args)
    tdim = mesh.topology.dim
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))
    c = Constant(mesh, PETSc.ScalarType(3.14))
    boundary_facets = locate_entities_boundary(
        mesh, tdim - 1, lambda x: np.ones(x.shape[1], dtype=bool))

    for i in range(V.num_sub_spaces):
        Vi = V.sub(i).collapse()[0]
        u_bci = Function(Vi)
        u_bci.x.array[:] = PETSc.ScalarType(c.value)

        boundary_dofsi = locate_dofs_topological((V.sub(i), Vi), tdim - 1,
                                                 boundary_facets)
        bc_fi = dirichletbc(u_bci, boundary_dofsi, V.sub(i))
        boundary_dofs = locate_dofs_topological(V.sub(i), tdim - 1,
                                                boundary_facets)
        bc_c = dirichletbc(c, boundary_dofs, V.sub(i))

        u_f = Function(V)
        set_bc(u_f.vector, [bc_fi])
        u_c = Function(V)
        set_bc(u_c.vector, [bc_c])
        assert np.allclose(u_f.vector.array, u_c.vector.array)
示例#2
0
def test_constant_bc(mesh_factory):
    """Test that setting a dirichletbc with a constant yields the same
    result as setting it with a function"""
    func, args = mesh_factory
    mesh = func(*args)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    c = PETSc.ScalarType(2)
    tdim = mesh.topology.dim
    boundary_facets = locate_entities_boundary(
        mesh, tdim - 1, lambda x: np.ones(x.shape[1], dtype=bool))

    boundary_dofs = locate_dofs_topological(V, tdim - 1, boundary_facets)

    u_bc = Function(V)
    u_bc.x.array[:] = c

    bc_f = dirichletbc(u_bc, boundary_dofs)
    bc_c = dirichletbc(c, boundary_dofs, V)

    u_f = Function(V)
    set_bc(u_f.vector, [bc_f])

    u_c = Function(V)
    set_bc(u_c.vector, [bc_c])
    assert np.allclose(u_f.vector.array, u_c.vector.array)
示例#3
0
def test_vector_constant_bc(mesh_factory):
    """Test that setting a dirichletbc with a vector valued constant
    yields the same result as setting it with a function"""
    func, args = mesh_factory
    mesh = func(*args)
    tdim = mesh.topology.dim
    V = VectorFunctionSpace(mesh, ("Lagrange", 1))
    assert V.num_sub_spaces == mesh.geometry.dim
    c = np.arange(1, mesh.geometry.dim + 1, dtype=PETSc.ScalarType)
    boundary_facets = locate_entities_boundary(
        mesh, tdim - 1, lambda x: np.ones(x.shape[1], dtype=bool))

    # Set using sub-functions
    Vs = [V.sub(i).collapse()[0] for i in range(V.num_sub_spaces)]
    boundary_dofs = [
        locate_dofs_topological((V.sub(i), Vs[i]), tdim - 1, boundary_facets)
        for i in range(len(Vs))
    ]
    u_bcs = [Function(Vs[i]) for i in range(len(Vs))]
    bcs_f = []
    for i, u in enumerate(u_bcs):
        u_bcs[i].x.array[:] = c[i]
        bcs_f.append(dirichletbc(u_bcs[i], boundary_dofs[i], V.sub(i)))
    u_f = Function(V)
    set_bc(u_f.vector, bcs_f)

    # Set using constant
    boundary_dofs = locate_dofs_topological(V, tdim - 1, boundary_facets)
    bc_c = dirichletbc(c, boundary_dofs, V)
    u_c = Function(V)
    u_c.x.array[:] = 0.0
    set_bc(u_c.vector, [bc_c])

    assert np.allclose(u_f.x.array, u_c.x.array)
示例#4
0
def test_mixed_constant_bc(mesh_factory):
    """Test that setting a dirichletbc with on a component of a mixed
    function yields the same result as setting it with a function"""
    func, args = mesh_factory
    mesh = func(*args)
    tdim, gdim = mesh.topology.dim, mesh.geometry.dim
    boundary_facets = locate_entities_boundary(
        mesh, tdim - 1, lambda x: np.ones(x.shape[1], dtype=bool))
    TH = ufl.MixedElement([
        ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2),
        ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    ])
    W = FunctionSpace(mesh, TH)
    U = Function(W)

    # Apply BC to component of a mixed space using a Constant
    c = Constant(mesh, (PETSc.ScalarType(2), PETSc.ScalarType(2)))
    dofs0 = locate_dofs_topological(W.sub(0), tdim - 1, boundary_facets)
    bc0 = dirichletbc(c, dofs0, W.sub(0))
    u = U.sub(0)
    set_bc(u.vector, [bc0])

    # Apply BC to component of a mixed space using a Function
    ubc1 = u.collapse()
    ubc1.interpolate(lambda x: np.full((gdim, x.shape[1]), 2.0))
    dofs1 = locate_dofs_topological((W.sub(0), ubc1.function_space), tdim - 1,
                                    boundary_facets)
    bc1 = dirichletbc(ubc1, dofs1, W.sub(0))
    U1 = Function(W)
    u1 = U1.sub(0)
    set_bc(u1.vector, [bc1])

    # Check that both approaches yield the same vector
    assert np.allclose(u.x.array, u1.x.array)
示例#5
0
    def monolithic_solve():
        """Monolithic (interleaved) solver"""
        P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
        P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
        TH = P2_el * P1_el
        W = FunctionSpace(mesh, TH)
        (u, p) = ufl.TrialFunctions(W)
        (v, q) = ufl.TestFunctions(W)
        a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
        a01 = ufl.inner(p, ufl.div(v)) * dx
        a10 = ufl.inner(ufl.div(u), q) * dx
        a = a00 + a01 + a10

        p00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx
        p11 = ufl.inner(p, q) * dx
        p_form = p00 + p11

        f = Function(W.sub(0).collapse()[0])
        p_zero = Function(W.sub(1).collapse()[0])
        L0 = inner(f, v) * dx
        L1 = inner(p_zero, q) * dx
        L = L0 + L1

        a, p_form, L = form(a), form(p_form), form(L)

        bdofsW0_P2_0 = locate_dofs_topological(W.sub(0), facetdim, bndry_facets0)
        bdofsW0_P2_1 = locate_dofs_topological(W.sub(0), facetdim, bndry_facets1)

        bc0 = dirichletbc(bc_value, bdofsW0_P2_0, W.sub(0))
        bc1 = dirichletbc(bc_value, bdofsW0_P2_1, W.sub(0))

        A = assemble_matrix(a, bcs=[bc0, bc1])
        A.assemble()
        P = assemble_matrix(p_form, bcs=[bc0, bc1])
        P.assemble()

        b = assemble_vector(L)
        apply_lifting(b, [a], bcs=[[bc0, bc1]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, [bc0, bc1])

        ksp = PETSc.KSP()
        ksp.create(mesh.comm)
        ksp.setOperators(A, P)
        ksp.setType("minres")
        pc = ksp.getPC()
        pc.setType('lu')

        def monitor(ksp, its, rnorm):
            # print("Num it, rnorm:", its, rnorm)
            pass

        ksp.setTolerances(rtol=1.0e-8, max_it=50)
        ksp.setMonitor(monitor)
        ksp.setFromOptions()
        x = A.createVecRight()
        ksp.solve(b, x)
        assert ksp.getConvergedReason() > 0
        return b.norm(), x.norm(), A.norm(), P.norm()
示例#6
0
    def monolithic_solve():
        """Monolithic version"""
        E = P * P
        W = FunctionSpace(mesh, E)
        U = Function(W)
        dU = ufl.TrialFunction(W)
        u0, u1 = ufl.split(U)
        v0, v1 = ufl.TestFunctions(W)

        F = inner((u0**2 + 1) * ufl.grad(u0), ufl.grad(v0)) * dx \
            + inner((u1**2 + 1) * ufl.grad(u1), ufl.grad(v1)) * dx \
            - inner(f, v0) * ufl.dx - inner(g, v1) * dx
        J = derivative(F, U, dU)

        F, J = form(F), form(J)

        u0_bc = Function(V0)
        u0_bc.interpolate(bc_val_0)
        u1_bc = Function(V1)
        u1_bc.interpolate(bc_val_1)
        bdofsW0_V0 = locate_dofs_topological((W.sub(0), V0), facetdim,
                                             bndry_facets)
        bdofsW1_V1 = locate_dofs_topological((W.sub(1), V1), facetdim,
                                             bndry_facets)
        bcs = [
            dirichletbc(u0_bc, bdofsW0_V0, W.sub(0)),
            dirichletbc(u1_bc, bdofsW1_V1, W.sub(1))
        ]

        Jmat = create_matrix(J)
        Fvec = create_vector(F)

        snes = PETSc.SNES().create(MPI.COMM_WORLD)
        snes.setTolerances(rtol=1.0e-15, max_it=10)

        snes.getKSP().setType("preonly")
        snes.getKSP().getPC().setType("lu")

        problem = NonlinearPDE_SNESProblem(F, J, U, bcs)
        snes.setFunction(problem.F_mono, Fvec)
        snes.setJacobian(problem.J_mono, J=Jmat, P=None)

        U.sub(0).interpolate(initial_guess_u)
        U.sub(1).interpolate(initial_guess_p)

        x = create_vector(F)
        x.array = U.vector.array_r

        snes.solve(None, x)
        assert snes.getKSP().getConvergedReason() > 0
        assert snes.getConvergedReason() > 0
        return x.norm()
示例#7
0
def test_assembly_bcs(mode):
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = inner(u, v) * dx + inner(u, v) * ds
    L = inner(1.0, v) * dx
    a, L = form(a), form(L)

    bdofsV = locate_dofs_geometrical(V, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))
    bc = dirichletbc(PETSc.ScalarType(1), bdofsV, V)

    # Assemble and apply 'global' lifting of bcs
    A = assemble_matrix(a)
    A.assemble()
    b = assemble_vector(L)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    g = b.duplicate()
    with g.localForm() as g_local:
        g_local.set(0.0)
    set_bc(g, [bc])
    f = b - A * g
    set_bc(f, [bc])

    # Assemble vector and apply lifting of bcs during assembly
    b_bc = assemble_vector(L)
    apply_lifting(b_bc, [a], [[bc]])
    b_bc.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b_bc, [bc])

    assert (f - b_bc).norm() == pytest.approx(0.0, rel=1e-12, abs=1e-12)
示例#8
0
def test_linear_pde():
    """Test Newton solver for a linear PDE"""
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 12)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u = Function(V)
    v = TestFunction(V)
    F = inner(10.0, v) * dx - inner(grad(u), grad(v)) * dx

    bc = dirichletbc(PETSc.ScalarType(1.0),
                     locate_dofs_geometrical(V, lambda x: np.logical_or(np.isclose(x[0], 0.0),
                                                                        np.isclose(x[0], 1.0))), V)

    # Create nonlinear problem
    problem = NonlinearPDEProblem(F, u, bc)

    # Create Newton solver and solve
    solver = _cpp.nls.NewtonSolver(MPI.COMM_WORLD)
    solver.setF(problem.F, problem.vector())
    solver.setJ(problem.J, problem.matrix())
    solver.set_form(problem.form)
    n, converged = solver.solve(u.vector)
    assert converged
    assert n == 1

    # Increment boundary condition and solve again
    bc.g.value[...] = PETSc.ScalarType(2.0)
    n, converged = solver.solve(u.vector)
    assert converged
    assert n == 1
示例#9
0
def solve(dtype=np.float32):
    """Solve the variational problem"""

    # Process forms. This will compile the forms for the requested type.
    a0 = fem.form(a, dtype=dtype)
    if np.issubdtype(dtype, np.complexfloating):
        L0 = fem.form(L, dtype=dtype)
    else:
        L0 = fem.form(ufl.replace(L, {fc: 0, gc: 0}), dtype=dtype)

    # Create a Dirichlet boundary condition
    bc = fem.dirichletbc(value=dtype(0), dofs=dofs, V=V)

    # Assemble forms
    A = fem.assemble_matrix(a0, [bc])
    A.finalize()
    b = fem.assemble_vector(L0)
    fem.apply_lifting(b.array, [a0], bcs=[[bc]])
    b.scatter_reverse(common.ScatterMode.add)
    fem.set_bc(b.array, [bc])

    # Create a Scipy sparse matrix that shares data with A
    As = scipy.sparse.csr_matrix((A.data, A.indices, A.indptr))

    # Solve the variational problem and return the solution
    uh = fem.Function(V, dtype=dtype)
    uh.x.array[:] = scipy.sparse.linalg.spsolve(As, b.array)
    return uh
示例#10
0
def test_nonlinear_pde():
    """Test Newton solver for a simple nonlinear PDE"""
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 5)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u = Function(V)
    v = TestFunction(V)
    F = inner(5.0, v) * dx - ufl.sqrt(u * u) * inner(
        grad(u), grad(v)) * dx - inner(u, v) * dx

    bc = dirichletbc(
        PETSc.ScalarType(1.0),
        locate_dofs_geometrical(
            V, lambda x: np.logical_or(np.isclose(x[0], 0.0),
                                       np.isclose(x[0], 1.0))), V)

    # Create nonlinear problem
    problem = NonlinearPDEProblem(F, u, bc)

    # Create Newton solver and solve
    u.x.array[:] = 0.9
    solver = _cpp.nls.petsc.NewtonSolver(MPI.COMM_WORLD)
    solver.setF(problem.F, problem.vector())
    solver.setJ(problem.J, problem.matrix())
    solver.set_form(problem.form)
    n, converged = solver.solve(u.vector)
    assert converged
    assert n < 6

    # Modify boundary condition and solve again
    bc.g.value[...] = 0.5
    n, converged = solver.solve(u.vector)
    assert converged
    assert n > 0 and n < 6
示例#11
0
def test_assemble_manifold():
    """Test assembly of poisson problem on a mesh with topological
    dimension 1 but embedded in 2D (gdim=2)"""
    points = np.array([[0.0, 0.0], [0.2, 0.0], [0.4, 0.0],
                       [0.6, 0.0], [0.8, 0.0], [1.0, 0.0]], dtype=np.float64)
    cells = np.array([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]], dtype=np.int32)
    cell = ufl.Cell("interval", geometric_dimension=points.shape[1])
    domain = ufl.Mesh(ufl.VectorElement("Lagrange", cell, 1))
    mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain)
    assert mesh.geometry.dim == 2
    assert mesh.topology.dim == 1

    U = FunctionSpace(mesh, ("P", 1))
    u, v = ufl.TrialFunction(U), ufl.TestFunction(U)
    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx(mesh)
    L = ufl.inner(1.0, v) * ufl.dx(mesh)
    a, L = form(a), form(L)

    bcdofs = locate_dofs_geometrical(U, lambda x: np.isclose(x[0], 0.0))
    bcs = [dirichletbc(PETSc.ScalarType(0), bcdofs, U)]
    A = assemble_matrix(a, bcs=bcs)
    A.assemble()

    b = assemble_vector(L)
    apply_lifting(b, [a], bcs=[bcs])
    set_bc(b, bcs)

    assert np.isclose(b.norm(), 0.41231)
    assert np.isclose(A.norm(), 25.0199)
示例#12
0
def run_scalar_test(mesh, V, degree):
    """ Manufactured Poisson problem, solving u = x[1]**p, where p is the
    degree of the Lagrange function space.

    """
    u, v = TrialFunction(V), TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map)
    a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1})
    a.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a)
    a = form(a)

    # Source term
    x = SpatialCoordinate(mesh)
    u_exact = x[1]**degree
    f = -div(grad(u_exact))

    # Set quadrature degree for linear form integrand (ignores effect of non-affine map)
    L = inner(f, v) * dx(metadata={"quadrature_degree": -1})
    L.integrals()[0].metadata(
    )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L)
    L = form(L)

    u_bc = Function(V)
    u_bc.interpolate(lambda x: x[1]**degree)

    # Create Dirichlet boundary condition
    facetdim = mesh.topology.dim - 1
    mesh.topology.create_connectivity(facetdim, mesh.topology.dim)
    bndry_facets = np.where(
        np.array(compute_boundary_facets(mesh.topology)) == 1)[0]
    bdofs = locate_dofs_topological(V, facetdim, bndry_facets)
    bc = dirichletbc(u_bc, bdofs)

    b = assemble_vector(L)
    apply_lifting(b, [a], bcs=[[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])

    a = form(a)
    A = assemble_matrix(a, bcs=[bc])
    A.assemble()

    # Create LU linear solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A)

    uh = Function(V)
    solver.solve(b, uh.vector)
    uh.x.scatter_forward()

    M = (u_exact - uh)**2 * dx
    M = form(M)
    error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM)
    assert np.absolute(error) < 1.0e-14
示例#13
0
    def amg_solve(N, method):
        # Elasticity parameters
        E = 1.0e9
        nu = 0.3
        mu = E / (2.0 * (1.0 + nu))
        lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))

        # Stress computation
        def sigma(v):
            return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym(
                grad(v))) * Identity(2)

        # Define problem
        mesh = create_unit_square(MPI.COMM_WORLD, N, N)
        V = VectorFunctionSpace(mesh, 'Lagrange', 1)
        u = TrialFunction(V)
        v = TestFunction(V)

        facetdim = mesh.topology.dim - 1
        bndry_facets = locate_entities_boundary(
            mesh, facetdim, lambda x: np.full(x.shape[1], True))
        bdofs = locate_dofs_topological(V.sub(0), V, facetdim, bndry_facets)
        bc = dirichletbc(PETSc.ScalarType(0), bdofs, V.sub(0))

        # Forms
        a, L = inner(sigma(u), grad(v)) * dx, dot(ufl.as_vector(
            (1.0, 1.0)), v) * dx

        # Assemble linear algebra objects
        A = assemble_matrix(a, [bc])
        A.assemble()
        b = assemble_vector(L)
        apply_lifting(b, [a], [[bc]])
        b.ghostUpdate(addv=PETSc.InsertMode.ADD,
                      mode=PETSc.ScatterMode.REVERSE)
        set_bc(b, [bc])

        # Create solution function
        u = Function(V)

        # Create near null space basis and orthonormalize
        null_space = build_nullspace(V, u.vector)

        # Attached near-null space to matrix
        A.set_near_nullspace(null_space)

        # Test that basis is orthonormal
        assert null_space.is_orthonormal()

        # Create PETSC smoothed aggregation AMG preconditioner, and
        # create CG solver
        solver = PETSc.KSP().create(mesh.comm)
        solver.setType("cg")

        # Set matrix operator
        solver.setOperators(A)

        # Compute solution and return number of iterations
        return solver.solve(b, u.vector)
示例#14
0
def test_overlapping_bcs():
    """Test that, when boundaries condition overlap, the last provided
    boundary condition is applied"""
    n = 23
    mesh = create_unit_square(MPI.COMM_WORLD, n, n)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    a = form(inner(u, v) * dx)
    L = form(inner(1, v) * dx)

    dofs_left = locate_dofs_geometrical(V, lambda x: x[0] < 1.0 / (2.0 * n))
    dofs_top = locate_dofs_geometrical(V, lambda x: x[1] > 1.0 - 1.0 /
                                       (2.0 * n))
    dof_corner = np.array(list(set(dofs_left).intersection(set(dofs_top))),
                          dtype=np.int64)

    # Check only one dof pair is found globally
    assert len(set(np.concatenate(MPI.COMM_WORLD.allgather(dof_corner)))) == 1

    bcs = [
        dirichletbc(PETSc.ScalarType(0), dofs_left, V),
        dirichletbc(PETSc.ScalarType(123.456), dofs_top, V)
    ]

    A, b = create_matrix(a), create_vector(L)
    assemble_matrix(A, a, bcs=bcs)
    A.assemble()

    # Check the diagonal (only on the rank that owns the row)
    d = A.getDiagonal()
    if len(dof_corner) > 0 and dof_corner[0] < V.dofmap.index_map.size_local:
        assert np.isclose(d.array_r[dof_corner[0]], 1.0)

    with b.localForm() as b_loc:
        b_loc.set(0)
    assemble_vector(b, L)
    apply_lifting(b, [a], [bcs])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, bcs)
    b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)

    if len(dof_corner) > 0:
        with b.localForm() as b_loc:
            assert b_loc[dof_corner[0]] == 123.456
示例#15
0
def test_assembly_dx_domains(mode, meshtags_factory):
    mesh = create_unit_square(MPI.COMM_WORLD, 10, 10, ghost_mode=mode)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

    # Prepare a marking structures
    # indices cover all cells
    # values are [1, 2, 3, 3, ...]
    cell_map = mesh.topology.index_map(mesh.topology.dim)
    num_cells = cell_map.size_local + cell_map.num_ghosts
    indices = np.arange(0, num_cells)
    values = np.full(indices.shape, 3, dtype=np.intc)
    values[0] = 1
    values[1] = 2
    marker = meshtags_factory(mesh, mesh.topology.dim, indices, values)
    dx = ufl.Measure('dx', subdomain_data=marker, domain=mesh)
    w = Function(V)
    w.x.array[:] = 0.5

    # Assemble matrix
    a = form(w * ufl.inner(u, v) * (dx(1) + dx(2) + dx(3)))
    A = assemble_matrix(a)
    A.assemble()
    a2 = form(w * ufl.inner(u, v) * dx)
    A2 = assemble_matrix(a2)
    A2.assemble()
    assert (A - A2).norm() < 1.0e-12

    bc = dirichletbc(Function(V), range(30))

    # Assemble vector
    L = form(ufl.inner(w, v) * (dx(1) + dx(2) + dx(3)))
    b = assemble_vector(L)

    apply_lifting(b, [a], [[bc]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    set_bc(b, [bc])

    L2 = form(ufl.inner(w, v) * dx)
    b2 = assemble_vector(L2)
    apply_lifting(b2, [a], [[bc]])
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                   mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc])
    assert (b - b2).norm() < 1.0e-12

    # Assemble scalar
    L = form(w * (dx(1) + dx(2) + dx(3)))
    s = assemble_scalar(L)
    s = mesh.comm.allreduce(s, op=MPI.SUM)
    assert s == pytest.approx(0.5, 1.0e-12)
    L2 = form(w * dx)
    s2 = assemble_scalar(L2)
    s2 = mesh.comm.allreduce(s2, op=MPI.SUM)
    assert s == pytest.approx(s2, 1.0e-12)
示例#16
0
def test_nonlinear_pde_snes():
    """Test Newton solver for a simple nonlinear PDE"""
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 15)
    V = FunctionSpace(mesh, ("Lagrange", 1))
    u = Function(V)
    v = TestFunction(V)
    F = inner(5.0, v) * dx - ufl.sqrt(u * u) * inner(
        grad(u), grad(v)) * dx - inner(u, v) * dx

    u_bc = Function(V)
    u_bc.x.array[:] = 1.0
    bc = dirichletbc(
        u_bc,
        locate_dofs_geometrical(
            V, lambda x: np.logical_or(np.isclose(x[0], 0.0),
                                       np.isclose(x[0], 1.0))))

    # Create nonlinear problem
    problem = NonlinearPDE_SNESProblem(F, u, bc)

    u.x.array[:] = 0.9
    b = la.create_petsc_vector(V.dofmap.index_map, V.dofmap.index_map_bs)
    J = create_matrix(problem.a)

    # Create Newton solver and solve
    snes = PETSc.SNES().create()
    snes.setFunction(problem.F, b)
    snes.setJacobian(problem.J, J)

    snes.setTolerances(rtol=1.0e-9, max_it=10)
    snes.getKSP().setType("preonly")
    snes.getKSP().setTolerances(rtol=1.0e-9)
    snes.getKSP().getPC().setType("lu")

    snes.solve(None, u.vector)
    assert snes.getConvergedReason() > 0
    assert snes.getIterationNumber() < 6

    # Modify boundary condition and solve again
    u_bc.x.array[:] = 0.6
    snes.solve(None, u.vector)
    assert snes.getConvergedReason() > 0
    assert snes.getIterationNumber() < 6
示例#17
0
        len(v))


# Create function space
V = VectorFunctionSpace(mesh, ("Lagrange", 1))

# Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
a = form(inner(sigma(u), grad(v)) * dx)
L = form(inner(f, v) * dx)

# Set up boundary condition on inner surface
bc = dirichletbc(
    np.array([0, 0, 0], dtype=PETSc.ScalarType),
    locate_dofs_geometrical(
        V,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[1], 1.0))),
    V)

# Assembly and solve
# ------------------
# ::

# Assemble system, applying boundary conditions
A = assemble_matrix(a, bcs=[bc])
A.assemble()

b = assemble_vector(L)
apply_lifting(b, [a], bcs=[[bc]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
set_bc(b, [bc])
示例#18
0
def test_assembly_solve_taylor_hood_nl(mesh):
    """Assemble Stokes problem with Taylor-Hood elements and solve."""
    gdim = mesh.geometry.dim
    P2 = VectorFunctionSpace(mesh, ("Lagrange", 2))
    P1 = FunctionSpace(mesh, ("Lagrange", 1))

    def boundary0(x):
        """Define boundary x = 0"""
        return np.isclose(x[0], 0.0)

    def boundary1(x):
        """Define boundary x = 1"""
        return np.isclose(x[0], 1.0)

    def initial_guess_u(x):
        u_init = np.row_stack(
            (np.sin(x[0]) * np.sin(x[1]), np.cos(x[0]) * np.cos(x[1])))
        if gdim == 3:
            u_init = np.row_stack((u_init, np.cos(x[2])))
        return u_init

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    u_bc_0 = Function(P2)
    u_bc_0.interpolate(
        lambda x: np.row_stack(tuple(x[j] + float(j) for j in range(gdim))))

    u_bc_1 = Function(P2)
    u_bc_1.interpolate(
        lambda x: np.row_stack(tuple(np.sin(x[j]) for j in range(gdim))))

    facetdim = mesh.topology.dim - 1
    bndry_facets0 = locate_entities_boundary(mesh, facetdim, boundary0)
    bndry_facets1 = locate_entities_boundary(mesh, facetdim, boundary1)

    bdofs0 = locate_dofs_topological(P2, facetdim, bndry_facets0)
    bdofs1 = locate_dofs_topological(P2, facetdim, bndry_facets1)

    bcs = [dirichletbc(u_bc_0, bdofs0), dirichletbc(u_bc_1, bdofs1)]

    u, p = Function(P2), Function(P1)
    du, dp = ufl.TrialFunction(P2), ufl.TrialFunction(P1)
    v, q = ufl.TestFunction(P2), ufl.TestFunction(P1)

    F = [
        inner(ufl.grad(u), ufl.grad(v)) * dx + inner(p, ufl.div(v)) * dx,
        inner(ufl.div(u), q) * dx
    ]
    J = [[derivative(F[0], u, du),
          derivative(F[0], p, dp)],
         [derivative(F[1], u, du),
          derivative(F[1], p, dp)]]
    P = [[J[0][0], None], [None, inner(dp, q) * dx]]

    F, J, P = form(F), form(J), form(P)

    # -- Blocked and monolithic

    Jmat0 = create_matrix_block(J)
    Pmat0 = create_matrix_block(P)
    Fvec0 = create_vector_block(F)

    snes = PETSc.SNES().create(MPI.COMM_WORLD)
    snes.setTolerances(rtol=1.0e-15, max_it=10)
    snes.getKSP().setType("minres")
    snes.getKSP().getPC().setType("lu")

    problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs, P=P)
    snes.setFunction(problem.F_block, Fvec0)
    snes.setJacobian(problem.J_block, J=Jmat0, P=Pmat0)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    x0 = create_vector_block(F)
    with u.vector.localForm() as _u, p.vector.localForm() as _p:
        scatter_local_vectors(x0, [_u.array_r, _p.array_r],
                              [(u.function_space.dofmap.index_map,
                                u.function_space.dofmap.index_map_bs),
                               (p.function_space.dofmap.index_map,
                                p.function_space.dofmap.index_map_bs)])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    snes.solve(None, x0)

    assert snes.getConvergedReason() > 0

    # -- Blocked and nested

    Jmat1 = create_matrix_nest(J)
    Pmat1 = create_matrix_nest(P)
    Fvec1 = create_vector_nest(F)

    snes = PETSc.SNES().create(MPI.COMM_WORLD)
    snes.setTolerances(rtol=1.0e-15, max_it=10)

    nested_IS = Jmat1.getNestISs()

    snes.getKSP().setType("minres")
    snes.getKSP().setTolerances(rtol=1e-12)
    snes.getKSP().getPC().setType("fieldsplit")
    snes.getKSP().getPC().setFieldSplitIS(["u", nested_IS[0][0]],
                                          ["p", nested_IS[1][1]])

    ksp_u, ksp_p = snes.getKSP().getPC().getFieldSplitSubKSP()
    ksp_u.setType("preonly")
    ksp_u.getPC().setType('lu')
    ksp_p.setType("preonly")
    ksp_p.getPC().setType('lu')

    problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs, P=P)
    snes.setFunction(problem.F_nest, Fvec1)
    snes.setJacobian(problem.J_nest, J=Jmat1, P=Pmat1)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    x1 = create_vector_nest(F)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    x1.set(0.0)
    snes.solve(None, x1)

    assert snes.getConvergedReason() > 0
    assert nest_matrix_norm(Jmat1) == pytest.approx(Jmat0.norm(), 1.0e-12)
    assert Fvec1.norm() == pytest.approx(Fvec0.norm(), 1.0e-12)
    assert x1.norm() == pytest.approx(x0.norm(), 1.0e-12)

    # -- Monolithic

    P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2)
    P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1)
    TH = P2_el * P1_el
    W = FunctionSpace(mesh, TH)
    U = Function(W)
    dU = ufl.TrialFunction(W)
    u, p = ufl.split(U)
    du, dp = ufl.split(dU)
    v, q = ufl.TestFunctions(W)

    F = inner(ufl.grad(u), ufl.grad(v)) * dx + inner(p, ufl.div(v)) * dx \
        + inner(ufl.div(u), q) * dx
    J = derivative(F, U, dU)
    P = inner(ufl.grad(du), ufl.grad(v)) * dx + inner(dp, q) * dx

    F, J, P = form(F), form(J), form(P)

    bdofsW0_P2_0 = locate_dofs_topological((W.sub(0), P2), facetdim,
                                           bndry_facets0)
    bdofsW0_P2_1 = locate_dofs_topological((W.sub(0), P2), facetdim,
                                           bndry_facets1)

    bcs = [
        dirichletbc(u_bc_0, bdofsW0_P2_0, W.sub(0)),
        dirichletbc(u_bc_1, bdofsW0_P2_1, W.sub(0))
    ]

    Jmat2 = create_matrix(J)
    Pmat2 = create_matrix(P)
    Fvec2 = create_vector(F)

    snes = PETSc.SNES().create(MPI.COMM_WORLD)
    snes.setTolerances(rtol=1.0e-15, max_it=10)
    snes.getKSP().setType("minres")
    snes.getKSP().getPC().setType("lu")

    problem = NonlinearPDE_SNESProblem(F, J, U, bcs, P=P)
    snes.setFunction(problem.F_mono, Fvec2)
    snes.setJacobian(problem.J_mono, J=Jmat2, P=Pmat2)

    U.sub(0).interpolate(initial_guess_u)
    U.sub(1).interpolate(initial_guess_p)

    x2 = create_vector(F)
    x2.array = U.vector.array_r

    snes.solve(None, x2)

    assert snes.getConvergedReason() > 0
    assert Jmat2.norm() == pytest.approx(Jmat0.norm(), 1.0e-12)
    assert Fvec2.norm() == pytest.approx(Fvec0.norm(), 1.0e-12)
    assert x2.norm() == pytest.approx(x0.norm(), 1.0e-12)
示例#19
0
def test_matrix_assembly_block_nl():
    """Test assembly of block matrices and vectors into (a) monolithic
    blocked structures, PETSc Nest structures, and monolithic structures
    in the nonlinear setting
    """
    mesh = create_unit_square(MPI.COMM_WORLD, 4, 8)
    p0, p1 = 1, 2
    P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0)
    P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1)
    V0 = FunctionSpace(mesh, P0)
    V1 = FunctionSpace(mesh, P1)

    def initial_guess_u(x):
        return np.sin(x[0]) * np.sin(x[1])

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    def bc_value(x):
        return np.cos(x[0]) * np.cos(x[1])

    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(
        mesh, facetdim,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))

    u_bc = Function(V1)
    u_bc.interpolate(bc_value)
    bdofs = locate_dofs_topological(V1, facetdim, bndry_facets)
    bc = dirichletbc(u_bc, bdofs)

    # Define variational problem
    du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    u, p = Function(V0), Function(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)

    u.interpolate(initial_guess_u)
    p.interpolate(initial_guess_p)

    f = 1.0
    g = -3.0

    F0 = inner(u, v) * dx + inner(p, v) * dx - inner(f, v) * dx
    F1 = inner(u, q) * dx + inner(p, q) * dx - inner(g, q) * dx

    a_block = form([[derivative(F0, u, du),
                     derivative(F0, p, dp)],
                    [derivative(F1, u, du),
                     derivative(F1, p, dp)]])
    L_block = form([F0, F1])

    # Monolithic blocked
    x0 = create_vector_block(L_block)
    scatter_local_vectors(x0, [u.vector.array_r, p.vector.array_r],
                          [(u.function_space.dofmap.index_map,
                            u.function_space.dofmap.index_map_bs),
                           (p.function_space.dofmap.index_map,
                            p.function_space.dofmap.index_map_bs)])
    x0.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)

    # Ghosts are updated inside assemble_vector_block
    A0 = assemble_matrix_block(a_block, bcs=[bc])
    b0 = assemble_vector_block(L_block, a_block, bcs=[bc], x0=x0, scale=-1.0)
    A0.assemble()
    assert A0.getType() != "nest"
    Anorm0 = A0.norm()
    bnorm0 = b0.norm()

    # Nested (MatNest)
    x1 = create_vector_nest(L_block)
    for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)):
        x1_sub, soln_sub = x1_soln_pair
        soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                    mode=PETSc.ScatterMode.FORWARD)
        soln_sub.vector.copy(result=x1_sub)
        x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                           mode=PETSc.ScatterMode.FORWARD)

    A1 = assemble_matrix_nest(a_block, bcs=[bc])
    b1 = assemble_vector_nest(L_block)
    apply_lifting_nest(b1, a_block, bcs=[bc], x0=x1, scale=-1.0)
    for b_sub in b1.getNestSubVecs():
        b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD,
                          mode=PETSc.ScatterMode.REVERSE)
    bcs0 = bcs_by_block([L.function_spaces[0] for L in L_block], [bc])

    set_bc_nest(b1, bcs0, x1, scale=-1.0)
    A1.assemble()

    assert A1.getType() == "nest"
    assert nest_matrix_norm(A1) == pytest.approx(Anorm0, 1.0e-12)
    assert b1.norm() == pytest.approx(bnorm0, 1.0e-12)

    # Monolithic version
    E = P0 * P1
    W = FunctionSpace(mesh, E)
    dU = ufl.TrialFunction(W)
    U = Function(W)
    u0, u1 = ufl.split(U)
    v0, v1 = ufl.TestFunctions(W)

    U.sub(0).interpolate(initial_guess_u)
    U.sub(1).interpolate(initial_guess_p)

    F = inner(u0, v0) * dx + inner(u1, v0) * dx + inner(u0, v1) * dx + inner(u1, v1) * dx \
        - inner(f, v0) * ufl.dx - inner(g, v1) * dx
    J = derivative(F, U, dU)
    F, J = form(F), form(J)

    bdofsW_V1 = locate_dofs_topological((W.sub(1), V1), facetdim, bndry_facets)

    bc = dirichletbc(u_bc, bdofsW_V1, W.sub(1))
    A2 = assemble_matrix(J, bcs=[bc])
    A2.assemble()
    b2 = assemble_vector(F)
    apply_lifting(b2, [J], bcs=[[bc]], x0=[U.vector], scale=-1.0)
    b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
    set_bc(b2, [bc], x0=U.vector, scale=-1.0)
    assert A2.getType() != "nest"
    assert A2.norm() == pytest.approx(Anorm0, 1.0e-12)
    assert b2.norm() == pytest.approx(bnorm0, 1.0e-12)
示例#20
0
left_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, left)
right_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, right)
bottom_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, bottom)
back_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, back)

left_dofs = fem.locate_dofs_topological(V.sub(0), mesh.topology.dim - 1,
                                        left_facets)
right_dofs = fem.locate_dofs_topological(V.sub(0), mesh.topology.dim - 1,
                                         right_facets)
back_dofs = fem.locate_dofs_topological(V.sub(2), mesh.topology.dim - 1,
                                        back_facets)
bottom_dofs = fem.locate_dofs_topological(V.sub(1), mesh.topology.dim - 1,
                                          bottom_facets)

right_disp = fem.Constant(mesh, 0.0)
ul = fem.dirichletbc(st(0), left_dofs, V.sub(0))
ub = fem.dirichletbc(st(0), bottom_dofs, V.sub(1))
ubak = fem.dirichletbc(st(0), back_dofs, V.sub(2))
ur = fem.dirichletbc(right_disp, right_dofs, V.sub(0))

bcs = [ul, ub, ubak, ur]
problem = fem.NonlinearProblem(a_uv, u, bcs=bcs, J=jac)
solver = NewtonSolver(comm, problem)
solver.rtol = 1.0e-5
solver.atol = 1.0e-7
solver.convergence_criterion = "residual"
solver.max_it = 200
solver.report = True
ksp = solver.krylov_solver
opts = PETSc.Options()
opts.getAll()
示例#21
0
def test_assembly_solve_block_nl():
    """Solve a two-field nonlinear diffusion like problem with block matrix
    approaches and test that solution is the same.
    """
    mesh = create_unit_square(MPI.COMM_WORLD, 12, 11)
    p = 1
    P = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p)
    V0 = FunctionSpace(mesh, P)
    V1 = V0.clone()

    def bc_val_0(x):
        return x[0]**2 + x[1]**2

    def bc_val_1(x):
        return np.sin(x[0]) * np.cos(x[1])

    def initial_guess_u(x):
        return np.sin(x[0]) * np.sin(x[1])

    def initial_guess_p(x):
        return -x[0]**2 - x[1]**3

    facetdim = mesh.topology.dim - 1
    bndry_facets = locate_entities_boundary(
        mesh, facetdim,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))

    u_bc0 = Function(V0)
    u_bc0.interpolate(bc_val_0)
    u_bc1 = Function(V1)
    u_bc1.interpolate(bc_val_1)
    bdofs0 = locate_dofs_topological(V0, facetdim, bndry_facets)
    bdofs1 = locate_dofs_topological(V1, facetdim, bndry_facets)
    bcs = [dirichletbc(u_bc0, bdofs0), dirichletbc(u_bc1, bdofs1)]

    # Block and Nest variational problem
    u, p = Function(V0), Function(V1)
    du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1)
    v, q = ufl.TestFunction(V0), ufl.TestFunction(V1)

    f = 1.0
    g = -3.0

    F = [
        inner((u**2 + 1) * ufl.grad(u), ufl.grad(v)) * dx - inner(f, v) * dx,
        inner((p**2 + 1) * ufl.grad(p), ufl.grad(q)) * dx - inner(g, q) * dx
    ]
    J = [[derivative(F[0], u, du),
          derivative(F[0], p, dp)],
         [derivative(F[1], u, du),
          derivative(F[1], p, dp)]]

    F, J = form(F), form(J)

    def blocked_solve():
        """Blocked version"""
        Jmat = create_matrix_block(J)
        Fvec = create_vector_block(F)

        snes = PETSc.SNES().create(MPI.COMM_WORLD)
        snes.setTolerances(rtol=1.0e-15, max_it=10)
        snes.getKSP().setType("preonly")
        snes.getKSP().getPC().setType("lu")

        problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs)
        snes.setFunction(problem.F_block, Fvec)
        snes.setJacobian(problem.J_block, J=Jmat, P=None)

        u.interpolate(initial_guess_u)
        p.interpolate(initial_guess_p)

        x = create_vector_block(F)
        scatter_local_vectors(x, [u.vector.array_r, p.vector.array_r],
                              [(u.function_space.dofmap.index_map,
                                u.function_space.dofmap.index_map_bs),
                               (p.function_space.dofmap.index_map,
                                p.function_space.dofmap.index_map_bs)])
        x.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                      mode=PETSc.ScatterMode.FORWARD)

        snes.solve(None, x)
        assert snes.getKSP().getConvergedReason() > 0
        assert snes.getConvergedReason() > 0
        return x.norm()

    def nested_solve():
        """Nested version"""
        Jmat = create_matrix_nest(J)
        assert Jmat.getType() == "nest"
        Fvec = create_vector_nest(F)
        assert Fvec.getType() == "nest"

        snes = PETSc.SNES().create(MPI.COMM_WORLD)
        snes.setTolerances(rtol=1.0e-15, max_it=10)

        nested_IS = Jmat.getNestISs()

        snes.getKSP().setType("gmres")
        snes.getKSP().setTolerances(rtol=1e-12)
        snes.getKSP().getPC().setType("fieldsplit")
        snes.getKSP().getPC().setFieldSplitIS(["u", nested_IS[0][0]],
                                              ["p", nested_IS[1][1]])

        ksp_u, ksp_p = snes.getKSP().getPC().getFieldSplitSubKSP()
        ksp_u.setType("preonly")
        ksp_u.getPC().setType('lu')
        ksp_p.setType("preonly")
        ksp_p.getPC().setType('lu')

        problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs)
        snes.setFunction(problem.F_nest, Fvec)
        snes.setJacobian(problem.J_nest, J=Jmat, P=None)

        u.interpolate(initial_guess_u)
        p.interpolate(initial_guess_p)

        x = create_vector_nest(F)
        assert x.getType() == "nest"
        for x_soln_pair in zip(x.getNestSubVecs(), (u, p)):
            x_sub, soln_sub = x_soln_pair
            soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                                        mode=PETSc.ScatterMode.FORWARD)
            soln_sub.vector.copy(result=x_sub)
            x_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                              mode=PETSc.ScatterMode.FORWARD)

        snes.solve(None, x)
        assert snes.getKSP().getConvergedReason() > 0
        assert snes.getConvergedReason() > 0
        return x.norm()

    def monolithic_solve():
        """Monolithic version"""
        E = P * P
        W = FunctionSpace(mesh, E)
        U = Function(W)
        dU = ufl.TrialFunction(W)
        u0, u1 = ufl.split(U)
        v0, v1 = ufl.TestFunctions(W)

        F = inner((u0**2 + 1) * ufl.grad(u0), ufl.grad(v0)) * dx \
            + inner((u1**2 + 1) * ufl.grad(u1), ufl.grad(v1)) * dx \
            - inner(f, v0) * ufl.dx - inner(g, v1) * dx
        J = derivative(F, U, dU)

        F, J = form(F), form(J)

        u0_bc = Function(V0)
        u0_bc.interpolate(bc_val_0)
        u1_bc = Function(V1)
        u1_bc.interpolate(bc_val_1)
        bdofsW0_V0 = locate_dofs_topological((W.sub(0), V0), facetdim,
                                             bndry_facets)
        bdofsW1_V1 = locate_dofs_topological((W.sub(1), V1), facetdim,
                                             bndry_facets)
        bcs = [
            dirichletbc(u0_bc, bdofsW0_V0, W.sub(0)),
            dirichletbc(u1_bc, bdofsW1_V1, W.sub(1))
        ]

        Jmat = create_matrix(J)
        Fvec = create_vector(F)

        snes = PETSc.SNES().create(MPI.COMM_WORLD)
        snes.setTolerances(rtol=1.0e-15, max_it=10)

        snes.getKSP().setType("preonly")
        snes.getKSP().getPC().setType("lu")

        problem = NonlinearPDE_SNESProblem(F, J, U, bcs)
        snes.setFunction(problem.F_mono, Fvec)
        snes.setJacobian(problem.J_mono, J=Jmat, P=None)

        U.sub(0).interpolate(initial_guess_u)
        U.sub(1).interpolate(initial_guess_p)

        x = create_vector(F)
        x.array = U.vector.array_r

        snes.solve(None, x)
        assert snes.getKSP().getConvergedReason() > 0
        assert snes.getConvergedReason() > 0
        return x.norm()

    norm0 = blocked_solve()
    norm1 = nested_solve()
    norm2 = monolithic_solve()
    assert norm1 == pytest.approx(norm0, 1.0e-12)
    assert norm2 == pytest.approx(norm0, 1.0e-12)
示例#22
0
    msh,
    dim=1,
    marker=lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(
        x[0], 2.0)))

# We now find the degrees-of-freedom that are associated with the
# boundary facets using {py:func}`locate_dofs_topological
# <dolfinx.fem.locate_dofs_topological>`

dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets)

# and use {py:func}`dirichletbc <dolfinx.fem.dirichletbc>` to create a
# {py:class}`DirichletBCMetaClass <dolfinx.fem.DirichletBCMetaClass>`
# class that represents the boundary condition

bc = fem.dirichletbc(value=ScalarType(0), dofs=dofs, V=V)

# Next, we express the variational problem using UFL.

# +
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
x = ufl.SpatialCoordinate(msh)
f = 10 * ufl.exp(-((x[0] - 0.5)**2 + (x[1] - 0.5)**2) / 0.02)
g = ufl.sin(5 * x[0])
a = inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx + inner(g, v) * ds
# -

# We create a {py:class}`LinearProblem <dolfinx.fem.LinearProblem>`
# object that brings together the variational problem, the Dirichlet
def demo_periodic3D(celltype: CellType):
    # Create mesh and finite element
    if celltype == CellType.tetrahedron:
        # Tet setup
        N = 10
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N)
        V = fem.VectorFunctionSpace(mesh, ("CG", 1))
    else:
        # Hex setup
        N = 10
        mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron)
        V = fem.VectorFunctionSpace(mesh, ("CG", 2))

    def dirichletboundary(x: NDArray[np.float64]) -> NDArray[np.bool_]:
        return np.logical_or(
            np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)),
            np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1)))

    # Create Dirichlet boundary condition
    zero = PETSc.ScalarType([0, 0, 0])
    geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary)
    bc = fem.dirichletbc(zero, geometrical_dofs, V)
    bcs = [bc]

    def PeriodicBoundary(x):
        return np.isclose(x[0], 1)

    facets = locate_entities_boundary(mesh, mesh.topology.dim - 1,
                                      PeriodicBoundary)
    arg_sort = np.argsort(facets)
    mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort],
                  np.full(len(facets), 2, dtype=np.int32))

    def periodic_relation(x):
        out_x = np.zeros(x.shape)
        out_x[0] = 1 - x[0]
        out_x[1] = x[1]
        out_x[2] = x[2]
        return out_x

    with Timer("~~Periodic: Compute mpc condition"):
        mpc = dolfinx_mpc.MultiPointConstraint(V)
        mpc.create_periodic_constraint_topological(V.sub(0), mt, 2,
                                                   periodic_relation, bcs, 1)
        mpc.finalize()
    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(grad(u), grad(v)) * dx

    x = SpatialCoordinate(mesh)
    dx_ = x[0] - 0.9
    dy_ = x[1] - 0.5
    dz_ = x[2] - 0.1
    f = as_vector((x[0] * sin(5.0 * pi * x[1]) +
                   1.0 * exp(-(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02),
                   0.1 * dx_ * dz_, 0.1 * dx_ * dy_))

    rhs = inner(f, v) * dx

    petsc_options: Dict[str, Union[str, float, int]]
    if complex_mode:
        rtol = 1e-16
        petsc_options = {"ksp_type": "preonly", "pc_type": "lu"}
    else:
        rtol = 1e-8
        petsc_options = {
            "ksp_type": "cg",
            "ksp_rtol": rtol,
            "pc_type": "hypre",
            "pc_hypre_typ": "boomeramg",
            "pc_hypre_boomeramg_max_iter": 1,
            "pc_hypre_boomeramg_cycle_type": "v",
            "pc_hypre_boomeramg_print_statistics": 1
        }
    problem = LinearProblem(a, rhs, mpc, bcs, petsc_options=petsc_options)
    u_h = problem.solve()

    # --------------------VERIFICATION-------------------------
    print("----Verification----")
    u_ = fem.Function(V)
    u_.x.array[:] = 0
    org_problem = fem.petsc.LinearProblem(a,
                                          rhs,
                                          u=u_,
                                          bcs=bcs,
                                          petsc_options=petsc_options)
    with Timer("~Periodic: Unconstrained solve"):
        org_problem.solve()
        it = org_problem.solver.getIterationNumber()
    print(f"Unconstrained solver iterations: {it}")

    # Write solutions to file
    ext = "tet" if celltype == CellType.tetrahedron else "hex"
    u_.name = "u_" + ext + "_unconstrained"

    # NOTE: Workaround as tabulate dof coordinates does not like extra ghosts
    u_out = fem.Function(V)
    old_local = u_out.x.map.size_local * u_out.x.bs
    old_ghosts = u_out.x.map.num_ghosts * u_out.x.bs
    mpc_local = u_h.x.map.size_local * u_h.x.bs
    assert (old_local == mpc_local)
    u_out.x.array[:old_local + old_ghosts] = u_h.x.array[:mpc_local +
                                                         old_ghosts]
    u_out.name = "u_" + ext
    fname = f"results/demo_periodic3d_{ext}.bp"
    out_periodic = VTXWriter(MPI.COMM_WORLD, fname, u_out)
    out_periodic.write(0)
    out_periodic.close()

    root = 0
    with Timer("~Demo: Verification"):
        dolfinx_mpc.utils.compare_mpc_lhs(org_problem.A,
                                          problem.A,
                                          mpc,
                                          root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(org_problem.b,
                                          problem.b,
                                          mpc,
                                          root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(org_problem.A, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(org_problem.b, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc, rtol=rtol)
示例#24
0
def demo_elasticity():
    mesh = create_unit_square(MPI.COMM_WORLD, 10, 10)

    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    # Generate Dirichlet BC on lower boundary (Fixed)

    def boundaries(x):
        return np.isclose(x[0], np.finfo(float).eps)

    facets = locate_entities_boundary(mesh, 1, boundaries)
    topological_dofs = fem.locate_dofs_topological(V, 1, facets)
    bc = fem.dirichletbc(np.array([0, 0], dtype=PETSc.ScalarType),
                         topological_dofs, V)
    bcs = [bc]

    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)

    # Elasticity parameters
    E = PETSc.ScalarType(1.0e4)
    nu = 0.0
    mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu)))
    lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)))

    # Stress computation
    def sigma(v):
        return (2.0 * mu * sym(grad(v)) +
                lmbda * tr(sym(grad(v))) * Identity(len(v)))

    x = SpatialCoordinate(mesh)
    # Define variational problem
    u = TrialFunction(V)
    v = TestFunction(V)
    a = inner(sigma(u), grad(v)) * dx
    rhs = inner(as_vector((0, (x[0] - 0.5) * 10**4 * x[1])), v) * dx

    # Create MPC
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.9}}
    mpc = MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, 1, 1)
    mpc.finalize()

    # Solve Linear problem
    petsc_options = {"ksp_type": "preonly", "pc_type": "lu"}
    problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options)
    u_h = problem.solve()
    u_h.name = "u_mpc"
    with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity.xdmf",
                  "w") as outfile:
        outfile.write_mesh(mesh)
        outfile.write_function(u_h)

    # Solve the MPC problem using a global transformation matrix
    # and numpy solvers to get reference values
    bilinear_form = fem.form(a)
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()
    linear_form = fem.form(rhs)
    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)
    solver.setOperators(A_org)
    u_ = fem.Function(V)
    solver.solve(L_org, u_.vector)
    u_.x.scatter_forward()
    u_.name = "u_unconstrained"

    with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity.xdmf",
                  "a") as outfile:
        outfile.write_function(u_)
        outfile.close()

    root = 0
    with Timer("~Demo: Verification"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem.A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem.b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    # Print out master-slave connectivity for the first slave
    master_owner = None
    master_data = None
    slave_owner = None
    if mpc.num_local_slaves > 0:
        slave_owner = MPI.COMM_WORLD.rank
        bs = mpc.function_space.dofmap.index_map_bs
        slave = mpc.slaves[0]
        print("Constrained: {0:.5e}\n Unconstrained: {1:.5e}".format(
            u_h.x.array[slave], u_.vector.array[slave]))
        master_owner = mpc._cpp_object.owners.links(slave)[0]
        _masters = mpc.masters
        master = _masters.links(slave)[0]
        glob_master = mpc.function_space.dofmap.index_map.local_to_global(
            [master // bs])[0]
        coeffs, offs = mpc.coefficients()
        master_data = [
            glob_master * bs + master % bs,
            coeffs[offs[slave]:offs[slave + 1]][0]
        ]
        # If master not on proc send info to this processor
        if MPI.COMM_WORLD.rank != master_owner:
            MPI.COMM_WORLD.send(master_data, dest=master_owner, tag=1)
        else:
            print("Master*Coeff: {0:.5e}".format(
                coeffs[offs[slave]:offs[slave + 1]][0] *
                u_h.x.array[_masters.links(slave)[0]]))
    # As a processor with a master is not aware that it has a master,
    # Determine this so that it can receive the global dof and coefficient
    master_recv = MPI.COMM_WORLD.allgather(master_owner)
    for master in master_recv:
        if master is not None:
            master_owner = master
            break
    if slave_owner != master_owner and MPI.COMM_WORLD.rank == master_owner:
        dofmap = mpc.function_space.dofmap
        bs = dofmap.index_map_bs
        in_data = MPI.COMM_WORLD.recv(source=MPI.ANY_SOURCE, tag=1)
        num_local = dofmap.index_map.size_local + dofmap.index_map.num_ghosts
        l2g = dofmap.index_map.local_to_global(
            np.arange(num_local, dtype=np.int32))
        l_index = np.flatnonzero(l2g == in_data[0] // bs)[0]
        print("Master*Coeff (on other proc): {0:.5e}".format(
            u_h.x.array[l_index * bs + in_data[0] % bs] * in_data[1]))
示例#25
0
#Function that returns 'TRUE' if the point of the mesh is in the region you want
#to apply the BC.
def BC_points(x):
    #x[0] is the vector of X-coordinate of all points ; x[1] is the vector of Y-coordinate
    return np.logical_and(
        np.logical_or(np.isclose(x[0], -L / 2), np.isclose(x[0], L / 2)),
        np.isclose(x[1], 0))


BC_entities = dolfinx.mesh.locate_entities_boundary(mesh, 0, BC_points)
BC_dofs = dolfinx.fem.locate_dofs_topological(V_u, 0, BC_entities)
u_.interpolate(lambda x: (np.zeros_like(x[0]), np.zeros_like(x[1])))

#FOR IMPOSED FORCE :
if parameters['loading']['type'] == 'IF':
    bcs_u = [dirichletbc(u_, BC_dofs)]
#FOR IMPOSED DISPLACEMENT :
if parameters['loading']['type'] == 'ID':

    def ID_points(x):
        return np.logical_and(
            np.equal(x[1], h),
            np.logical_and(np.greater_equal(x[0], -1 * n),
                           np.less_equal(x[0], n)))

    ID_entities = dolfinx.mesh.locate_entities_boundary(mesh, 0, ID_points)
    ID_dofs = dolfinx.fem.locate_dofs_topological(V_u, 0, ID_entities)
    u_imposed.interpolate(lambda x: (np.zeros_like(x[0]), -1 * parameters[
        'loading']['max'] * np.ones_like(x[1])))
    bcs_u = [dirichletbc(u_, BC_dofs), dirichletbc(u_imposed, ID_dofs)]
示例#26
0
def test_vector_possion(Nx, Ny, slave_space, master_space,
                        get_assemblers):  # noqa: F811

    assemble_matrix, assemble_vector = get_assemblers
    # Create mesh and function space
    mesh = create_unit_square(MPI.COMM_WORLD, Nx, Ny)

    V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1))

    def boundary(x):
        return np.isclose(x.T, [0, 0, 0]).all(axis=1)

    # Define boundary conditions (HAS TO BE NON-MASTER NODES)
    u_bc = fem.Function(V)
    with u_bc.vector.localForm() as u_local:
        u_local.set(0.0)

    bdofsV = fem.locate_dofs_geometrical(V, boundary)
    bc = fem.dirichletbc(u_bc, bdofsV)
    bcs = [bc]

    # Define variational problem
    u = ufl.TrialFunction(V)
    v = ufl.TestFunction(V)
    x = ufl.SpatialCoordinate(mesh)
    f = ufl.as_vector((-5 * x[1], 7 * x[0]))

    a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
    rhs = ufl.inner(f, v) * ufl.dx
    bilinear_form = fem.form(a)
    linear_form = fem.form(rhs)

    # Setup LU solver
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType(PETSc.KSP.Type.PREONLY)
    solver.getPC().setType(PETSc.PC.Type.LU)

    # Create multipoint constraint
    def l2b(li):
        return np.array(li, dtype=np.float64).tobytes()

    s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.1, l2b([0.5, 1]): 0.3}}
    mpc = dolfinx_mpc.MultiPointConstraint(V)
    mpc.create_general_constraint(s_m_c, slave_space, master_space)
    mpc.finalize()

    with Timer("~TEST: Assemble matrix"):
        A = assemble_matrix(bilinear_form, mpc, bcs=bcs)
    with Timer("~TEST: Assemble vector"):
        b = dolfinx_mpc.assemble_vector(linear_form, mpc)

    dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc)
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                  mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(b, bcs)

    solver.setOperators(A)
    uh = b.copy()
    uh.set(0)

    solver.solve(b, uh)
    uh.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                   mode=PETSc.ScatterMode.FORWARD)
    mpc.backsubstitution(uh)

    # Generate reference matrices for unconstrained problem
    A_org = fem.petsc.assemble_matrix(bilinear_form, bcs)
    A_org.assemble()

    L_org = fem.petsc.assemble_vector(linear_form)
    fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs])
    L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES,
                      mode=PETSc.ScatterMode.REVERSE)
    fem.petsc.set_bc(L_org, bcs)

    root = 0
    comm = mesh.comm
    with Timer("~TEST: Compare"):
        dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root)
        dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root)

        # Gather LHS, RHS and solution on one process
        A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root)
        K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root)
        L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root)
        u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root)

        if MPI.COMM_WORLD.rank == root:
            KTAK = K.T * A_csr * K
            reduced_L = K.T @ L_np
            # Solve linear system
            d = scipy.sparse.linalg.spsolve(KTAK, reduced_L)
            # Back substitution to full solution vector
            uh_numpy = K @ d
            assert np.allclose(uh_numpy, u_mpc)

    list_timings(comm, [TimingType.wall])
示例#27
0
                                           lambda x: np.isclose(x[0], Lx))

dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0))
dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx))
# Set Bcs Function
zero_u.interpolate(lambda x: (np.zeros_like(x[0]), np.zeros_like(x[1])))
zero_alpha.interpolate((lambda x: np.zeros_like(x[0])))
u_.interpolate(lambda x: (np.ones_like(x[0]), 0 * np.ones_like(x[1])))
alpha_lb.interpolate(lambda x: np.zeros_like(x[0]))
alpha_ub.interpolate(lambda x: np.ones_like(x[0]))

for f in [zero_u, zero_alpha, u_, alpha_lb, alpha_ub]:
    f.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT,
                         mode=PETSc.ScatterMode.FORWARD)

bc_u_left = dirichletbc(np.array([0, 0], dtype=PETSc.ScalarType), dofs_u_left,
                        V_u)

# import pdb; pdb.set_trace()

bc_u_right = dirichletbc(u_, dofs_u_right)
bcs_u = [bc_u_left, bc_u_right]

bcs_alpha = [
    dirichletbc(
        np.array(0, dtype=PETSc.ScalarType),
        np.concatenate([dofs_alpha_left, dofs_alpha_right]),
        V_alpha,
    )
]

set_bc(alpha_ub.vector, bcs_alpha)
def test_eigen_assembly(tempdir):  # noqa: F811
    """Compare assembly into scipy.CSR matrix with PETSc assembly"""
    def compile_eigen_csr_assembler_module():
        dolfinx_pc = dolfinx.pkgconfig.parse("dolfinx")
        eigen_dir = dolfinx.pkgconfig.parse("eigen3")["include_dirs"]
        cpp_code_header = f"""
<%
setup_pybind11(cfg)
cfg['include_dirs'] = {dolfinx_pc["include_dirs"] + [petsc4py.get_include()]
  + [pybind11.get_include()] + [str(pybind_inc())] + eigen_dir}
cfg['compiler_args'] = ["-std=c++17", "-Wno-comment"]
cfg['libraries'] = {dolfinx_pc["libraries"]}
cfg['library_dirs'] = {dolfinx_pc["library_dirs"]}
%>
"""

        cpp_code = """
#include <pybind11/pybind11.h>
#include <pybind11/eigen.h>
#include <pybind11/stl.h>
#include <vector>
#include <Eigen/Sparse>
#include <petscsys.h>
#include <dolfinx/fem/assembler.h>
#include <dolfinx/fem/DirichletBC.h>
#include <dolfinx/fem/Form.h>

template<typename T>
Eigen::SparseMatrix<T, Eigen::RowMajor>
assemble_csr(const dolfinx::fem::Form<T>& a,
             const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<T>>>& bcs)
{
  std::vector<Eigen::Triplet<T>> triplets;
  auto mat_add
      = [&triplets](const xtl::span<const std::int32_t>& rows,
                    const xtl::span<const std::int32_t>& cols,
                    const xtl::span<const T>& v)
    {
      for (std::size_t i = 0; i < rows.size(); ++i)
        for (std::size_t j = 0; j < cols.size(); ++j)
          triplets.emplace_back(rows[i], cols[j], v[i * cols.size() + j]);
      return 0;
    };

  dolfinx::fem::assemble_matrix(mat_add, a, bcs);

  auto map0 = a.function_spaces().at(0)->dofmap()->index_map;
  int bs0 = a.function_spaces().at(0)->dofmap()->index_map_bs();
  auto map1 = a.function_spaces().at(1)->dofmap()->index_map;
  int bs1 = a.function_spaces().at(1)->dofmap()->index_map_bs();
  Eigen::SparseMatrix<T, Eigen::RowMajor> mat(
      bs0 * (map0->size_local() + map0->num_ghosts()),
      bs1 * (map1->size_local() + map1->num_ghosts()));
  mat.setFromTriplets(triplets.begin(), triplets.end());
  return mat;
}

PYBIND11_MODULE(eigen_csr, m)
{
  m.def("assemble_matrix", &assemble_csr<PetscScalar>);
}
"""

        path = pathlib.Path(tempdir)
        open(pathlib.Path(tempdir, "eigen_csr.cpp"),
             "w").write(cpp_code + cpp_code_header)
        rel_path = path.relative_to(pathlib.Path(__file__).parent)
        p = str(rel_path).replace("/", ".") + ".eigen_csr"
        return cppimport.imp(p)

    def assemble_csr_matrix(a, bcs):
        """Assemble bilinear form into an SciPy CSR matrix, in serial."""
        module = compile_eigen_csr_assembler_module()
        A = module.assemble_matrix(a, bcs)
        if a.function_spaces[0] is a.function_spaces[1]:
            for bc in bcs:
                if a.function_spaces[0].contains(bc.function_space):
                    bc_dofs, _ = bc.dof_indices()
                    # See https://github.com/numpy/numpy/issues/14132
                    # for why we copy bc_dofs as a work-around
                    dofs = bc_dofs.copy()
                    A[dofs, dofs] = 1.0
        return A

    mesh = create_unit_square(MPI.COMM_SELF, 12, 12)
    Q = FunctionSpace(mesh, ("Lagrange", 1))
    u = ufl.TrialFunction(Q)
    v = ufl.TestFunction(Q)
    a = form(ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx)

    bdofsQ = locate_dofs_geometrical(
        Q,
        lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))
    bc = dirichletbc(PETSc.ScalarType(1), bdofsQ, Q)

    A1 = assemble_matrix(a, [bc])
    A1.assemble()
    A2 = assemble_csr_matrix(a, [bc])
    assert np.isclose(A1.norm(), scipy.sparse.linalg.norm(A2))
示例#29
0
def facet_normal_approximation(V, mt: _cpp.mesh.MeshTags_int32, mt_id: int, tangent=False, jit_params: dict = {},
                               form_compiler_params: dict = {}):
    """
    Approximate the facet normal by projecting it into the function space for a set of facets

    Parameters
    ----------
    V
        The function space to project into
    mt
        The `dolfinx.mesh.MeshTagsMetaClass` containing facet markers
    mt_id
        The id for the facets in `mt` we want to represent the normal at
    tangent
        To approximate the tangent to the facet set this flag to `True`
    jit_params
        Parameters used in CFFI JIT compilation of C code generated by FFCx.
        See `DOLFINx-documentation <https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py#L22-L37>`
        for all available parameters. Takes priority over all other parameter values.
    form_compiler_params
        Parameters used in FFCx compilation of this form. Run `ffcx - -help` at
        the commandline to see all available options. Takes priority over all
        other parameter values, except for `scalar_type` which is determined by
        DOLFINx.
"""
    timer = _common.Timer("~MPC: Facet normal projection")
    comm = V.mesh.comm
    n = ufl.FacetNormal(V.mesh)
    nh = _fem.Function(V)
    u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
    ds = ufl.ds(domain=V.mesh, subdomain_data=mt, subdomain_id=mt_id)
    if tangent:
        if V.mesh.geometry.dim == 1:
            raise ValueError("Tangent not defined for 1D problem")
        elif V.mesh.geometry.dim == 2:
            a = ufl.inner(u, v) * ds
            L = ufl.inner(ufl.as_vector([-n[1], n[0]]), v) * ds
        else:
            def tangential_proj(u, n):
                """
                See for instance:
                https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf
                """
                return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u
            c = _fem.Constant(V.mesh, [1, 1, 1])
            a = ufl.inner(u, v) * ds
            L = ufl.inner(tangential_proj(c, n), v) * ds
    else:
        a = (ufl.inner(u, v) * ds)
        L = ufl.inner(n, v) * ds

    # Find all dofs that are not boundary dofs
    imap = V.dofmap.index_map
    all_blocks = np.arange(imap.size_local, dtype=np.int32)
    top_blocks = _fem.locate_dofs_topological(V, V.mesh.topology.dim - 1, mt.find(mt_id))
    deac_blocks = all_blocks[np.isin(all_blocks, top_blocks, invert=True)]

    # Note there should be a better way to do this
    # Create sparsity pattern only for constraint + bc
    bilinear_form = _fem.form(a, jit_params=jit_params,
                              form_compiler_params=form_compiler_params)
    pattern = _fem.create_sparsity_pattern(bilinear_form)
    pattern.insert_diagonal(deac_blocks)
    pattern.assemble()
    u_0 = _fem.Function(V)
    u_0.vector.set(0)

    bc_deac = _fem.dirichletbc(u_0, deac_blocks)
    A = _cpp.la.petsc.create_matrix(comm, pattern)
    A.zeroEntries()

    # Assemble the matrix with all entries
    form_coeffs = _cpp.fem.pack_coefficients(bilinear_form)
    form_consts = _cpp.fem.pack_constants(bilinear_form)
    _cpp.fem.petsc.assemble_matrix(A, bilinear_form, form_consts, form_coeffs, [bc_deac])
    if bilinear_form.function_spaces[0] is bilinear_form.function_spaces[1]:
        A.assemblyBegin(PETSc.Mat.AssemblyType.FLUSH)
        A.assemblyEnd(PETSc.Mat.AssemblyType.FLUSH)
        _cpp.fem.petsc.insert_diagonal(A, bilinear_form.function_spaces[0], [bc_deac], 1.0)
    A.assemble()
    linear_form = _fem.form(L, jit_params=jit_params,
                            form_compiler_params=form_compiler_params)
    b = _fem.petsc.assemble_vector(linear_form)

    _fem.petsc.apply_lifting(b, [bilinear_form], [[bc_deac]])
    b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
    _fem.petsc.set_bc(b, [bc_deac])

    # Solve Linear problem
    solver = PETSc.KSP().create(MPI.COMM_WORLD)
    solver.setType("cg")
    solver.rtol = 1e-8
    solver.setOperators(A)
    solver.solve(b, nh.vector)
    nh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD)
    timer.stop()
    return nh
示例#30
0
文件: test_vi.py 项目: kumiori/mec647
    return is_close


left_facets = dolfinx.mesh.locate_entities_boundary(mesh,
                                                    mesh.topology.dim - 1,
                                                    left)
left_dofs = dolfinx.fem.locate_dofs_topological(V, mesh.topology.dim - 1,
                                                left_facets)

right_facets = dolfinx.mesh.locate_entities_boundary(mesh,
                                                     mesh.topology.dim - 1,
                                                     left)
right_dofs = dolfinx.fem.locate_dofs_topological(V, mesh.topology.dim - 1,
                                                 right_facets)

bcs = [dirichletbc(zero, left_dofs), dirichletbc(one, right_dofs)]

u = Function(V)
energy = (ell * ufl.inner(ufl.grad(u), ufl.grad(u)) + u / ell) * ufl.dx
denergy = ufl.derivative(energy, u, ufl.TestFunction(V))
ddenergy = ufl.derivative(denergy, u, ufl.TrialFunction(V))

problem = SNESSolver(
    denergy,
    u,
    bcs,
    bounds=(zero, one),
    petsc_options=parameters.get("solvers").get("damage").get("snes"),
    prefix="vi",
)