def test_sub_constant_bc(mesh_factory): """Test that setting a dirichletbc with on a component of a vector valued function yields the same result as setting it with a function""" func, args = mesh_factory mesh = func(*args) tdim = mesh.topology.dim V = VectorFunctionSpace(mesh, ("Lagrange", 1)) c = Constant(mesh, PETSc.ScalarType(3.14)) boundary_facets = locate_entities_boundary( mesh, tdim - 1, lambda x: np.ones(x.shape[1], dtype=bool)) for i in range(V.num_sub_spaces): Vi = V.sub(i).collapse()[0] u_bci = Function(Vi) u_bci.x.array[:] = PETSc.ScalarType(c.value) boundary_dofsi = locate_dofs_topological((V.sub(i), Vi), tdim - 1, boundary_facets) bc_fi = dirichletbc(u_bci, boundary_dofsi, V.sub(i)) boundary_dofs = locate_dofs_topological(V.sub(i), tdim - 1, boundary_facets) bc_c = dirichletbc(c, boundary_dofs, V.sub(i)) u_f = Function(V) set_bc(u_f.vector, [bc_fi]) u_c = Function(V) set_bc(u_c.vector, [bc_c]) assert np.allclose(u_f.vector.array, u_c.vector.array)
def test_constant_bc(mesh_factory): """Test that setting a dirichletbc with a constant yields the same result as setting it with a function""" func, args = mesh_factory mesh = func(*args) V = FunctionSpace(mesh, ("Lagrange", 1)) c = PETSc.ScalarType(2) tdim = mesh.topology.dim boundary_facets = locate_entities_boundary( mesh, tdim - 1, lambda x: np.ones(x.shape[1], dtype=bool)) boundary_dofs = locate_dofs_topological(V, tdim - 1, boundary_facets) u_bc = Function(V) u_bc.x.array[:] = c bc_f = dirichletbc(u_bc, boundary_dofs) bc_c = dirichletbc(c, boundary_dofs, V) u_f = Function(V) set_bc(u_f.vector, [bc_f]) u_c = Function(V) set_bc(u_c.vector, [bc_c]) assert np.allclose(u_f.vector.array, u_c.vector.array)
def test_vector_constant_bc(mesh_factory): """Test that setting a dirichletbc with a vector valued constant yields the same result as setting it with a function""" func, args = mesh_factory mesh = func(*args) tdim = mesh.topology.dim V = VectorFunctionSpace(mesh, ("Lagrange", 1)) assert V.num_sub_spaces == mesh.geometry.dim c = np.arange(1, mesh.geometry.dim + 1, dtype=PETSc.ScalarType) boundary_facets = locate_entities_boundary( mesh, tdim - 1, lambda x: np.ones(x.shape[1], dtype=bool)) # Set using sub-functions Vs = [V.sub(i).collapse()[0] for i in range(V.num_sub_spaces)] boundary_dofs = [ locate_dofs_topological((V.sub(i), Vs[i]), tdim - 1, boundary_facets) for i in range(len(Vs)) ] u_bcs = [Function(Vs[i]) for i in range(len(Vs))] bcs_f = [] for i, u in enumerate(u_bcs): u_bcs[i].x.array[:] = c[i] bcs_f.append(dirichletbc(u_bcs[i], boundary_dofs[i], V.sub(i))) u_f = Function(V) set_bc(u_f.vector, bcs_f) # Set using constant boundary_dofs = locate_dofs_topological(V, tdim - 1, boundary_facets) bc_c = dirichletbc(c, boundary_dofs, V) u_c = Function(V) u_c.x.array[:] = 0.0 set_bc(u_c.vector, [bc_c]) assert np.allclose(u_f.x.array, u_c.x.array)
def test_mixed_constant_bc(mesh_factory): """Test that setting a dirichletbc with on a component of a mixed function yields the same result as setting it with a function""" func, args = mesh_factory mesh = func(*args) tdim, gdim = mesh.topology.dim, mesh.geometry.dim boundary_facets = locate_entities_boundary( mesh, tdim - 1, lambda x: np.ones(x.shape[1], dtype=bool)) TH = ufl.MixedElement([ ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2), ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1) ]) W = FunctionSpace(mesh, TH) U = Function(W) # Apply BC to component of a mixed space using a Constant c = Constant(mesh, (PETSc.ScalarType(2), PETSc.ScalarType(2))) dofs0 = locate_dofs_topological(W.sub(0), tdim - 1, boundary_facets) bc0 = dirichletbc(c, dofs0, W.sub(0)) u = U.sub(0) set_bc(u.vector, [bc0]) # Apply BC to component of a mixed space using a Function ubc1 = u.collapse() ubc1.interpolate(lambda x: np.full((gdim, x.shape[1]), 2.0)) dofs1 = locate_dofs_topological((W.sub(0), ubc1.function_space), tdim - 1, boundary_facets) bc1 = dirichletbc(ubc1, dofs1, W.sub(0)) U1 = Function(W) u1 = U1.sub(0) set_bc(u1.vector, [bc1]) # Check that both approaches yield the same vector assert np.allclose(u.x.array, u1.x.array)
def monolithic_solve(): """Monolithic (interleaved) solver""" P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2) P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1) TH = P2_el * P1_el W = FunctionSpace(mesh, TH) (u, p) = ufl.TrialFunctions(W) (v, q) = ufl.TestFunctions(W) a00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx a01 = ufl.inner(p, ufl.div(v)) * dx a10 = ufl.inner(ufl.div(u), q) * dx a = a00 + a01 + a10 p00 = ufl.inner(ufl.grad(u), ufl.grad(v)) * dx p11 = ufl.inner(p, q) * dx p_form = p00 + p11 f = Function(W.sub(0).collapse()[0]) p_zero = Function(W.sub(1).collapse()[0]) L0 = inner(f, v) * dx L1 = inner(p_zero, q) * dx L = L0 + L1 a, p_form, L = form(a), form(p_form), form(L) bdofsW0_P2_0 = locate_dofs_topological(W.sub(0), facetdim, bndry_facets0) bdofsW0_P2_1 = locate_dofs_topological(W.sub(0), facetdim, bndry_facets1) bc0 = dirichletbc(bc_value, bdofsW0_P2_0, W.sub(0)) bc1 = dirichletbc(bc_value, bdofsW0_P2_1, W.sub(0)) A = assemble_matrix(a, bcs=[bc0, bc1]) A.assemble() P = assemble_matrix(p_form, bcs=[bc0, bc1]) P.assemble() b = assemble_vector(L) apply_lifting(b, [a], bcs=[[bc0, bc1]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc0, bc1]) ksp = PETSc.KSP() ksp.create(mesh.comm) ksp.setOperators(A, P) ksp.setType("minres") pc = ksp.getPC() pc.setType('lu') def monitor(ksp, its, rnorm): # print("Num it, rnorm:", its, rnorm) pass ksp.setTolerances(rtol=1.0e-8, max_it=50) ksp.setMonitor(monitor) ksp.setFromOptions() x = A.createVecRight() ksp.solve(b, x) assert ksp.getConvergedReason() > 0 return b.norm(), x.norm(), A.norm(), P.norm()
def monolithic_solve(): """Monolithic version""" E = P * P W = FunctionSpace(mesh, E) U = Function(W) dU = ufl.TrialFunction(W) u0, u1 = ufl.split(U) v0, v1 = ufl.TestFunctions(W) F = inner((u0**2 + 1) * ufl.grad(u0), ufl.grad(v0)) * dx \ + inner((u1**2 + 1) * ufl.grad(u1), ufl.grad(v1)) * dx \ - inner(f, v0) * ufl.dx - inner(g, v1) * dx J = derivative(F, U, dU) F, J = form(F), form(J) u0_bc = Function(V0) u0_bc.interpolate(bc_val_0) u1_bc = Function(V1) u1_bc.interpolate(bc_val_1) bdofsW0_V0 = locate_dofs_topological((W.sub(0), V0), facetdim, bndry_facets) bdofsW1_V1 = locate_dofs_topological((W.sub(1), V1), facetdim, bndry_facets) bcs = [ dirichletbc(u0_bc, bdofsW0_V0, W.sub(0)), dirichletbc(u1_bc, bdofsW1_V1, W.sub(1)) ] Jmat = create_matrix(J) Fvec = create_vector(F) snes = PETSc.SNES().create(MPI.COMM_WORLD) snes.setTolerances(rtol=1.0e-15, max_it=10) snes.getKSP().setType("preonly") snes.getKSP().getPC().setType("lu") problem = NonlinearPDE_SNESProblem(F, J, U, bcs) snes.setFunction(problem.F_mono, Fvec) snes.setJacobian(problem.J_mono, J=Jmat, P=None) U.sub(0).interpolate(initial_guess_u) U.sub(1).interpolate(initial_guess_p) x = create_vector(F) x.array = U.vector.array_r snes.solve(None, x) assert snes.getKSP().getConvergedReason() > 0 assert snes.getConvergedReason() > 0 return x.norm()
def test_assembly_bcs(mode): mesh = create_unit_square(MPI.COMM_WORLD, 12, 12, ghost_mode=mode) V = FunctionSpace(mesh, ("Lagrange", 1)) u, v = ufl.TrialFunction(V), ufl.TestFunction(V) a = inner(u, v) * dx + inner(u, v) * ds L = inner(1.0, v) * dx a, L = form(a), form(L) bdofsV = locate_dofs_geometrical(V, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0))) bc = dirichletbc(PETSc.ScalarType(1), bdofsV, V) # Assemble and apply 'global' lifting of bcs A = assemble_matrix(a) A.assemble() b = assemble_vector(L) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) g = b.duplicate() with g.localForm() as g_local: g_local.set(0.0) set_bc(g, [bc]) f = b - A * g set_bc(f, [bc]) # Assemble vector and apply lifting of bcs during assembly b_bc = assemble_vector(L) apply_lifting(b_bc, [a], [[bc]]) b_bc.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b_bc, [bc]) assert (f - b_bc).norm() == pytest.approx(0.0, rel=1e-12, abs=1e-12)
def test_linear_pde(): """Test Newton solver for a linear PDE""" # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 12, 12) V = FunctionSpace(mesh, ("Lagrange", 1)) u = Function(V) v = TestFunction(V) F = inner(10.0, v) * dx - inner(grad(u), grad(v)) * dx bc = dirichletbc(PETSc.ScalarType(1.0), locate_dofs_geometrical(V, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0))), V) # Create nonlinear problem problem = NonlinearPDEProblem(F, u, bc) # Create Newton solver and solve solver = _cpp.nls.NewtonSolver(MPI.COMM_WORLD) solver.setF(problem.F, problem.vector()) solver.setJ(problem.J, problem.matrix()) solver.set_form(problem.form) n, converged = solver.solve(u.vector) assert converged assert n == 1 # Increment boundary condition and solve again bc.g.value[...] = PETSc.ScalarType(2.0) n, converged = solver.solve(u.vector) assert converged assert n == 1
def solve(dtype=np.float32): """Solve the variational problem""" # Process forms. This will compile the forms for the requested type. a0 = fem.form(a, dtype=dtype) if np.issubdtype(dtype, np.complexfloating): L0 = fem.form(L, dtype=dtype) else: L0 = fem.form(ufl.replace(L, {fc: 0, gc: 0}), dtype=dtype) # Create a Dirichlet boundary condition bc = fem.dirichletbc(value=dtype(0), dofs=dofs, V=V) # Assemble forms A = fem.assemble_matrix(a0, [bc]) A.finalize() b = fem.assemble_vector(L0) fem.apply_lifting(b.array, [a0], bcs=[[bc]]) b.scatter_reverse(common.ScatterMode.add) fem.set_bc(b.array, [bc]) # Create a Scipy sparse matrix that shares data with A As = scipy.sparse.csr_matrix((A.data, A.indices, A.indptr)) # Solve the variational problem and return the solution uh = fem.Function(V, dtype=dtype) uh.x.array[:] = scipy.sparse.linalg.spsolve(As, b.array) return uh
def test_nonlinear_pde(): """Test Newton solver for a simple nonlinear PDE""" # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 12, 5) V = FunctionSpace(mesh, ("Lagrange", 1)) u = Function(V) v = TestFunction(V) F = inner(5.0, v) * dx - ufl.sqrt(u * u) * inner( grad(u), grad(v)) * dx - inner(u, v) * dx bc = dirichletbc( PETSc.ScalarType(1.0), locate_dofs_geometrical( V, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0))), V) # Create nonlinear problem problem = NonlinearPDEProblem(F, u, bc) # Create Newton solver and solve u.x.array[:] = 0.9 solver = _cpp.nls.petsc.NewtonSolver(MPI.COMM_WORLD) solver.setF(problem.F, problem.vector()) solver.setJ(problem.J, problem.matrix()) solver.set_form(problem.form) n, converged = solver.solve(u.vector) assert converged assert n < 6 # Modify boundary condition and solve again bc.g.value[...] = 0.5 n, converged = solver.solve(u.vector) assert converged assert n > 0 and n < 6
def test_assemble_manifold(): """Test assembly of poisson problem on a mesh with topological dimension 1 but embedded in 2D (gdim=2)""" points = np.array([[0.0, 0.0], [0.2, 0.0], [0.4, 0.0], [0.6, 0.0], [0.8, 0.0], [1.0, 0.0]], dtype=np.float64) cells = np.array([[0, 1], [1, 2], [2, 3], [3, 4], [4, 5]], dtype=np.int32) cell = ufl.Cell("interval", geometric_dimension=points.shape[1]) domain = ufl.Mesh(ufl.VectorElement("Lagrange", cell, 1)) mesh = create_mesh(MPI.COMM_WORLD, cells, points, domain) assert mesh.geometry.dim == 2 assert mesh.topology.dim == 1 U = FunctionSpace(mesh, ("P", 1)) u, v = ufl.TrialFunction(U), ufl.TestFunction(U) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx(mesh) L = ufl.inner(1.0, v) * ufl.dx(mesh) a, L = form(a), form(L) bcdofs = locate_dofs_geometrical(U, lambda x: np.isclose(x[0], 0.0)) bcs = [dirichletbc(PETSc.ScalarType(0), bcdofs, U)] A = assemble_matrix(a, bcs=bcs) A.assemble() b = assemble_vector(L) apply_lifting(b, [a], bcs=[bcs]) set_bc(b, bcs) assert np.isclose(b.norm(), 0.41231) assert np.isclose(A.norm(), 25.0199)
def run_scalar_test(mesh, V, degree): """ Manufactured Poisson problem, solving u = x[1]**p, where p is the degree of the Lagrange function space. """ u, v = TrialFunction(V), TestFunction(V) a = inner(grad(u), grad(v)) * dx # Get quadrature degree for bilinear form integrand (ignores effect of non-affine map) a = inner(grad(u), grad(v)) * dx(metadata={"quadrature_degree": -1}) a.integrals()[0].metadata( )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(a) a = form(a) # Source term x = SpatialCoordinate(mesh) u_exact = x[1]**degree f = -div(grad(u_exact)) # Set quadrature degree for linear form integrand (ignores effect of non-affine map) L = inner(f, v) * dx(metadata={"quadrature_degree": -1}) L.integrals()[0].metadata( )["quadrature_degree"] = ufl.algorithms.estimate_total_polynomial_degree(L) L = form(L) u_bc = Function(V) u_bc.interpolate(lambda x: x[1]**degree) # Create Dirichlet boundary condition facetdim = mesh.topology.dim - 1 mesh.topology.create_connectivity(facetdim, mesh.topology.dim) bndry_facets = np.where( np.array(compute_boundary_facets(mesh.topology)) == 1)[0] bdofs = locate_dofs_topological(V, facetdim, bndry_facets) bc = dirichletbc(u_bc, bdofs) b = assemble_vector(L) apply_lifting(b, [a], bcs=[[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) a = form(a) A = assemble_matrix(a, bcs=[bc]) A.assemble() # Create LU linear solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A) uh = Function(V) solver.solve(b, uh.vector) uh.x.scatter_forward() M = (u_exact - uh)**2 * dx M = form(M) error = mesh.comm.allreduce(assemble_scalar(M), op=MPI.SUM) assert np.absolute(error) < 1.0e-14
def amg_solve(N, method): # Elasticity parameters E = 1.0e9 nu = 0.3 mu = E / (2.0 * (1.0 + nu)) lmbda = E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu)) # Stress computation def sigma(v): return 2.0 * mu * sym(grad(v)) + lmbda * tr(sym( grad(v))) * Identity(2) # Define problem mesh = create_unit_square(MPI.COMM_WORLD, N, N) V = VectorFunctionSpace(mesh, 'Lagrange', 1) u = TrialFunction(V) v = TestFunction(V) facetdim = mesh.topology.dim - 1 bndry_facets = locate_entities_boundary( mesh, facetdim, lambda x: np.full(x.shape[1], True)) bdofs = locate_dofs_topological(V.sub(0), V, facetdim, bndry_facets) bc = dirichletbc(PETSc.ScalarType(0), bdofs, V.sub(0)) # Forms a, L = inner(sigma(u), grad(v)) * dx, dot(ufl.as_vector( (1.0, 1.0)), v) * dx # Assemble linear algebra objects A = assemble_matrix(a, [bc]) A.assemble() b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) # Create solution function u = Function(V) # Create near null space basis and orthonormalize null_space = build_nullspace(V, u.vector) # Attached near-null space to matrix A.set_near_nullspace(null_space) # Test that basis is orthonormal assert null_space.is_orthonormal() # Create PETSC smoothed aggregation AMG preconditioner, and # create CG solver solver = PETSc.KSP().create(mesh.comm) solver.setType("cg") # Set matrix operator solver.setOperators(A) # Compute solution and return number of iterations return solver.solve(b, u.vector)
def test_overlapping_bcs(): """Test that, when boundaries condition overlap, the last provided boundary condition is applied""" n = 23 mesh = create_unit_square(MPI.COMM_WORLD, n, n) V = FunctionSpace(mesh, ("Lagrange", 1)) u, v = ufl.TrialFunction(V), ufl.TestFunction(V) a = form(inner(u, v) * dx) L = form(inner(1, v) * dx) dofs_left = locate_dofs_geometrical(V, lambda x: x[0] < 1.0 / (2.0 * n)) dofs_top = locate_dofs_geometrical(V, lambda x: x[1] > 1.0 - 1.0 / (2.0 * n)) dof_corner = np.array(list(set(dofs_left).intersection(set(dofs_top))), dtype=np.int64) # Check only one dof pair is found globally assert len(set(np.concatenate(MPI.COMM_WORLD.allgather(dof_corner)))) == 1 bcs = [ dirichletbc(PETSc.ScalarType(0), dofs_left, V), dirichletbc(PETSc.ScalarType(123.456), dofs_top, V) ] A, b = create_matrix(a), create_vector(L) assemble_matrix(A, a, bcs=bcs) A.assemble() # Check the diagonal (only on the rank that owns the row) d = A.getDiagonal() if len(dof_corner) > 0 and dof_corner[0] < V.dofmap.index_map.size_local: assert np.isclose(d.array_r[dof_corner[0]], 1.0) with b.localForm() as b_loc: b_loc.set(0) assemble_vector(b, L) apply_lifting(b, [a], [bcs]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, bcs) b.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) if len(dof_corner) > 0: with b.localForm() as b_loc: assert b_loc[dof_corner[0]] == 123.456
def test_assembly_dx_domains(mode, meshtags_factory): mesh = create_unit_square(MPI.COMM_WORLD, 10, 10, ghost_mode=mode) V = FunctionSpace(mesh, ("Lagrange", 1)) u, v = ufl.TrialFunction(V), ufl.TestFunction(V) # Prepare a marking structures # indices cover all cells # values are [1, 2, 3, 3, ...] cell_map = mesh.topology.index_map(mesh.topology.dim) num_cells = cell_map.size_local + cell_map.num_ghosts indices = np.arange(0, num_cells) values = np.full(indices.shape, 3, dtype=np.intc) values[0] = 1 values[1] = 2 marker = meshtags_factory(mesh, mesh.topology.dim, indices, values) dx = ufl.Measure('dx', subdomain_data=marker, domain=mesh) w = Function(V) w.x.array[:] = 0.5 # Assemble matrix a = form(w * ufl.inner(u, v) * (dx(1) + dx(2) + dx(3))) A = assemble_matrix(a) A.assemble() a2 = form(w * ufl.inner(u, v) * dx) A2 = assemble_matrix(a2) A2.assemble() assert (A - A2).norm() < 1.0e-12 bc = dirichletbc(Function(V), range(30)) # Assemble vector L = form(ufl.inner(w, v) * (dx(1) + dx(2) + dx(3))) b = assemble_vector(L) apply_lifting(b, [a], [[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc]) L2 = form(ufl.inner(w, v) * dx) b2 = assemble_vector(L2) apply_lifting(b2, [a], [[bc]]) b2.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) set_bc(b2, [bc]) assert (b - b2).norm() < 1.0e-12 # Assemble scalar L = form(w * (dx(1) + dx(2) + dx(3))) s = assemble_scalar(L) s = mesh.comm.allreduce(s, op=MPI.SUM) assert s == pytest.approx(0.5, 1.0e-12) L2 = form(w * dx) s2 = assemble_scalar(L2) s2 = mesh.comm.allreduce(s2, op=MPI.SUM) assert s == pytest.approx(s2, 1.0e-12)
def test_nonlinear_pde_snes(): """Test Newton solver for a simple nonlinear PDE""" # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, 12, 15) V = FunctionSpace(mesh, ("Lagrange", 1)) u = Function(V) v = TestFunction(V) F = inner(5.0, v) * dx - ufl.sqrt(u * u) * inner( grad(u), grad(v)) * dx - inner(u, v) * dx u_bc = Function(V) u_bc.x.array[:] = 1.0 bc = dirichletbc( u_bc, locate_dofs_geometrical( V, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)))) # Create nonlinear problem problem = NonlinearPDE_SNESProblem(F, u, bc) u.x.array[:] = 0.9 b = la.create_petsc_vector(V.dofmap.index_map, V.dofmap.index_map_bs) J = create_matrix(problem.a) # Create Newton solver and solve snes = PETSc.SNES().create() snes.setFunction(problem.F, b) snes.setJacobian(problem.J, J) snes.setTolerances(rtol=1.0e-9, max_it=10) snes.getKSP().setType("preonly") snes.getKSP().setTolerances(rtol=1.0e-9) snes.getKSP().getPC().setType("lu") snes.solve(None, u.vector) assert snes.getConvergedReason() > 0 assert snes.getIterationNumber() < 6 # Modify boundary condition and solve again u_bc.x.array[:] = 0.6 snes.solve(None, u.vector) assert snes.getConvergedReason() > 0 assert snes.getIterationNumber() < 6
len(v)) # Create function space V = VectorFunctionSpace(mesh, ("Lagrange", 1)) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = form(inner(sigma(u), grad(v)) * dx) L = form(inner(f, v) * dx) # Set up boundary condition on inner surface bc = dirichletbc( np.array([0, 0, 0], dtype=PETSc.ScalarType), locate_dofs_geometrical( V, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[1], 1.0))), V) # Assembly and solve # ------------------ # :: # Assemble system, applying boundary conditions A = assemble_matrix(a, bcs=[bc]) A.assemble() b = assemble_vector(L) apply_lifting(b, [a], bcs=[[bc]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b, [bc])
def test_assembly_solve_taylor_hood_nl(mesh): """Assemble Stokes problem with Taylor-Hood elements and solve.""" gdim = mesh.geometry.dim P2 = VectorFunctionSpace(mesh, ("Lagrange", 2)) P1 = FunctionSpace(mesh, ("Lagrange", 1)) def boundary0(x): """Define boundary x = 0""" return np.isclose(x[0], 0.0) def boundary1(x): """Define boundary x = 1""" return np.isclose(x[0], 1.0) def initial_guess_u(x): u_init = np.row_stack( (np.sin(x[0]) * np.sin(x[1]), np.cos(x[0]) * np.cos(x[1]))) if gdim == 3: u_init = np.row_stack((u_init, np.cos(x[2]))) return u_init def initial_guess_p(x): return -x[0]**2 - x[1]**3 u_bc_0 = Function(P2) u_bc_0.interpolate( lambda x: np.row_stack(tuple(x[j] + float(j) for j in range(gdim)))) u_bc_1 = Function(P2) u_bc_1.interpolate( lambda x: np.row_stack(tuple(np.sin(x[j]) for j in range(gdim)))) facetdim = mesh.topology.dim - 1 bndry_facets0 = locate_entities_boundary(mesh, facetdim, boundary0) bndry_facets1 = locate_entities_boundary(mesh, facetdim, boundary1) bdofs0 = locate_dofs_topological(P2, facetdim, bndry_facets0) bdofs1 = locate_dofs_topological(P2, facetdim, bndry_facets1) bcs = [dirichletbc(u_bc_0, bdofs0), dirichletbc(u_bc_1, bdofs1)] u, p = Function(P2), Function(P1) du, dp = ufl.TrialFunction(P2), ufl.TrialFunction(P1) v, q = ufl.TestFunction(P2), ufl.TestFunction(P1) F = [ inner(ufl.grad(u), ufl.grad(v)) * dx + inner(p, ufl.div(v)) * dx, inner(ufl.div(u), q) * dx ] J = [[derivative(F[0], u, du), derivative(F[0], p, dp)], [derivative(F[1], u, du), derivative(F[1], p, dp)]] P = [[J[0][0], None], [None, inner(dp, q) * dx]] F, J, P = form(F), form(J), form(P) # -- Blocked and monolithic Jmat0 = create_matrix_block(J) Pmat0 = create_matrix_block(P) Fvec0 = create_vector_block(F) snes = PETSc.SNES().create(MPI.COMM_WORLD) snes.setTolerances(rtol=1.0e-15, max_it=10) snes.getKSP().setType("minres") snes.getKSP().getPC().setType("lu") problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs, P=P) snes.setFunction(problem.F_block, Fvec0) snes.setJacobian(problem.J_block, J=Jmat0, P=Pmat0) u.interpolate(initial_guess_u) p.interpolate(initial_guess_p) x0 = create_vector_block(F) with u.vector.localForm() as _u, p.vector.localForm() as _p: scatter_local_vectors(x0, [_u.array_r, _p.array_r], [(u.function_space.dofmap.index_map, u.function_space.dofmap.index_map_bs), (p.function_space.dofmap.index_map, p.function_space.dofmap.index_map_bs)]) x0.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) snes.solve(None, x0) assert snes.getConvergedReason() > 0 # -- Blocked and nested Jmat1 = create_matrix_nest(J) Pmat1 = create_matrix_nest(P) Fvec1 = create_vector_nest(F) snes = PETSc.SNES().create(MPI.COMM_WORLD) snes.setTolerances(rtol=1.0e-15, max_it=10) nested_IS = Jmat1.getNestISs() snes.getKSP().setType("minres") snes.getKSP().setTolerances(rtol=1e-12) snes.getKSP().getPC().setType("fieldsplit") snes.getKSP().getPC().setFieldSplitIS(["u", nested_IS[0][0]], ["p", nested_IS[1][1]]) ksp_u, ksp_p = snes.getKSP().getPC().getFieldSplitSubKSP() ksp_u.setType("preonly") ksp_u.getPC().setType('lu') ksp_p.setType("preonly") ksp_p.getPC().setType('lu') problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs, P=P) snes.setFunction(problem.F_nest, Fvec1) snes.setJacobian(problem.J_nest, J=Jmat1, P=Pmat1) u.interpolate(initial_guess_u) p.interpolate(initial_guess_p) x1 = create_vector_nest(F) for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)): x1_sub, soln_sub = x1_soln_pair soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) soln_sub.vector.copy(result=x1_sub) x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) x1.set(0.0) snes.solve(None, x1) assert snes.getConvergedReason() > 0 assert nest_matrix_norm(Jmat1) == pytest.approx(Jmat0.norm(), 1.0e-12) assert Fvec1.norm() == pytest.approx(Fvec0.norm(), 1.0e-12) assert x1.norm() == pytest.approx(x0.norm(), 1.0e-12) # -- Monolithic P2_el = ufl.VectorElement("Lagrange", mesh.ufl_cell(), 2) P1_el = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), 1) TH = P2_el * P1_el W = FunctionSpace(mesh, TH) U = Function(W) dU = ufl.TrialFunction(W) u, p = ufl.split(U) du, dp = ufl.split(dU) v, q = ufl.TestFunctions(W) F = inner(ufl.grad(u), ufl.grad(v)) * dx + inner(p, ufl.div(v)) * dx \ + inner(ufl.div(u), q) * dx J = derivative(F, U, dU) P = inner(ufl.grad(du), ufl.grad(v)) * dx + inner(dp, q) * dx F, J, P = form(F), form(J), form(P) bdofsW0_P2_0 = locate_dofs_topological((W.sub(0), P2), facetdim, bndry_facets0) bdofsW0_P2_1 = locate_dofs_topological((W.sub(0), P2), facetdim, bndry_facets1) bcs = [ dirichletbc(u_bc_0, bdofsW0_P2_0, W.sub(0)), dirichletbc(u_bc_1, bdofsW0_P2_1, W.sub(0)) ] Jmat2 = create_matrix(J) Pmat2 = create_matrix(P) Fvec2 = create_vector(F) snes = PETSc.SNES().create(MPI.COMM_WORLD) snes.setTolerances(rtol=1.0e-15, max_it=10) snes.getKSP().setType("minres") snes.getKSP().getPC().setType("lu") problem = NonlinearPDE_SNESProblem(F, J, U, bcs, P=P) snes.setFunction(problem.F_mono, Fvec2) snes.setJacobian(problem.J_mono, J=Jmat2, P=Pmat2) U.sub(0).interpolate(initial_guess_u) U.sub(1).interpolate(initial_guess_p) x2 = create_vector(F) x2.array = U.vector.array_r snes.solve(None, x2) assert snes.getConvergedReason() > 0 assert Jmat2.norm() == pytest.approx(Jmat0.norm(), 1.0e-12) assert Fvec2.norm() == pytest.approx(Fvec0.norm(), 1.0e-12) assert x2.norm() == pytest.approx(x0.norm(), 1.0e-12)
def test_matrix_assembly_block_nl(): """Test assembly of block matrices and vectors into (a) monolithic blocked structures, PETSc Nest structures, and monolithic structures in the nonlinear setting """ mesh = create_unit_square(MPI.COMM_WORLD, 4, 8) p0, p1 = 1, 2 P0 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p0) P1 = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p1) V0 = FunctionSpace(mesh, P0) V1 = FunctionSpace(mesh, P1) def initial_guess_u(x): return np.sin(x[0]) * np.sin(x[1]) def initial_guess_p(x): return -x[0]**2 - x[1]**3 def bc_value(x): return np.cos(x[0]) * np.cos(x[1]) facetdim = mesh.topology.dim - 1 bndry_facets = locate_entities_boundary( mesh, facetdim, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0))) u_bc = Function(V1) u_bc.interpolate(bc_value) bdofs = locate_dofs_topological(V1, facetdim, bndry_facets) bc = dirichletbc(u_bc, bdofs) # Define variational problem du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1) u, p = Function(V0), Function(V1) v, q = ufl.TestFunction(V0), ufl.TestFunction(V1) u.interpolate(initial_guess_u) p.interpolate(initial_guess_p) f = 1.0 g = -3.0 F0 = inner(u, v) * dx + inner(p, v) * dx - inner(f, v) * dx F1 = inner(u, q) * dx + inner(p, q) * dx - inner(g, q) * dx a_block = form([[derivative(F0, u, du), derivative(F0, p, dp)], [derivative(F1, u, du), derivative(F1, p, dp)]]) L_block = form([F0, F1]) # Monolithic blocked x0 = create_vector_block(L_block) scatter_local_vectors(x0, [u.vector.array_r, p.vector.array_r], [(u.function_space.dofmap.index_map, u.function_space.dofmap.index_map_bs), (p.function_space.dofmap.index_map, p.function_space.dofmap.index_map_bs)]) x0.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) # Ghosts are updated inside assemble_vector_block A0 = assemble_matrix_block(a_block, bcs=[bc]) b0 = assemble_vector_block(L_block, a_block, bcs=[bc], x0=x0, scale=-1.0) A0.assemble() assert A0.getType() != "nest" Anorm0 = A0.norm() bnorm0 = b0.norm() # Nested (MatNest) x1 = create_vector_nest(L_block) for x1_soln_pair in zip(x1.getNestSubVecs(), (u, p)): x1_sub, soln_sub = x1_soln_pair soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) soln_sub.vector.copy(result=x1_sub) x1_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) A1 = assemble_matrix_nest(a_block, bcs=[bc]) b1 = assemble_vector_nest(L_block) apply_lifting_nest(b1, a_block, bcs=[bc], x0=x1, scale=-1.0) for b_sub in b1.getNestSubVecs(): b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) bcs0 = bcs_by_block([L.function_spaces[0] for L in L_block], [bc]) set_bc_nest(b1, bcs0, x1, scale=-1.0) A1.assemble() assert A1.getType() == "nest" assert nest_matrix_norm(A1) == pytest.approx(Anorm0, 1.0e-12) assert b1.norm() == pytest.approx(bnorm0, 1.0e-12) # Monolithic version E = P0 * P1 W = FunctionSpace(mesh, E) dU = ufl.TrialFunction(W) U = Function(W) u0, u1 = ufl.split(U) v0, v1 = ufl.TestFunctions(W) U.sub(0).interpolate(initial_guess_u) U.sub(1).interpolate(initial_guess_p) F = inner(u0, v0) * dx + inner(u1, v0) * dx + inner(u0, v1) * dx + inner(u1, v1) * dx \ - inner(f, v0) * ufl.dx - inner(g, v1) * dx J = derivative(F, U, dU) F, J = form(F), form(J) bdofsW_V1 = locate_dofs_topological((W.sub(1), V1), facetdim, bndry_facets) bc = dirichletbc(u_bc, bdofsW_V1, W.sub(1)) A2 = assemble_matrix(J, bcs=[bc]) A2.assemble() b2 = assemble_vector(F) apply_lifting(b2, [J], bcs=[[bc]], x0=[U.vector], scale=-1.0) b2.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE) set_bc(b2, [bc], x0=U.vector, scale=-1.0) assert A2.getType() != "nest" assert A2.norm() == pytest.approx(Anorm0, 1.0e-12) assert b2.norm() == pytest.approx(bnorm0, 1.0e-12)
left_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, left) right_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, right) bottom_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, bottom) back_facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, back) left_dofs = fem.locate_dofs_topological(V.sub(0), mesh.topology.dim - 1, left_facets) right_dofs = fem.locate_dofs_topological(V.sub(0), mesh.topology.dim - 1, right_facets) back_dofs = fem.locate_dofs_topological(V.sub(2), mesh.topology.dim - 1, back_facets) bottom_dofs = fem.locate_dofs_topological(V.sub(1), mesh.topology.dim - 1, bottom_facets) right_disp = fem.Constant(mesh, 0.0) ul = fem.dirichletbc(st(0), left_dofs, V.sub(0)) ub = fem.dirichletbc(st(0), bottom_dofs, V.sub(1)) ubak = fem.dirichletbc(st(0), back_dofs, V.sub(2)) ur = fem.dirichletbc(right_disp, right_dofs, V.sub(0)) bcs = [ul, ub, ubak, ur] problem = fem.NonlinearProblem(a_uv, u, bcs=bcs, J=jac) solver = NewtonSolver(comm, problem) solver.rtol = 1.0e-5 solver.atol = 1.0e-7 solver.convergence_criterion = "residual" solver.max_it = 200 solver.report = True ksp = solver.krylov_solver opts = PETSc.Options() opts.getAll()
def test_assembly_solve_block_nl(): """Solve a two-field nonlinear diffusion like problem with block matrix approaches and test that solution is the same. """ mesh = create_unit_square(MPI.COMM_WORLD, 12, 11) p = 1 P = ufl.FiniteElement("Lagrange", mesh.ufl_cell(), p) V0 = FunctionSpace(mesh, P) V1 = V0.clone() def bc_val_0(x): return x[0]**2 + x[1]**2 def bc_val_1(x): return np.sin(x[0]) * np.cos(x[1]) def initial_guess_u(x): return np.sin(x[0]) * np.sin(x[1]) def initial_guess_p(x): return -x[0]**2 - x[1]**3 facetdim = mesh.topology.dim - 1 bndry_facets = locate_entities_boundary( mesh, facetdim, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0))) u_bc0 = Function(V0) u_bc0.interpolate(bc_val_0) u_bc1 = Function(V1) u_bc1.interpolate(bc_val_1) bdofs0 = locate_dofs_topological(V0, facetdim, bndry_facets) bdofs1 = locate_dofs_topological(V1, facetdim, bndry_facets) bcs = [dirichletbc(u_bc0, bdofs0), dirichletbc(u_bc1, bdofs1)] # Block and Nest variational problem u, p = Function(V0), Function(V1) du, dp = ufl.TrialFunction(V0), ufl.TrialFunction(V1) v, q = ufl.TestFunction(V0), ufl.TestFunction(V1) f = 1.0 g = -3.0 F = [ inner((u**2 + 1) * ufl.grad(u), ufl.grad(v)) * dx - inner(f, v) * dx, inner((p**2 + 1) * ufl.grad(p), ufl.grad(q)) * dx - inner(g, q) * dx ] J = [[derivative(F[0], u, du), derivative(F[0], p, dp)], [derivative(F[1], u, du), derivative(F[1], p, dp)]] F, J = form(F), form(J) def blocked_solve(): """Blocked version""" Jmat = create_matrix_block(J) Fvec = create_vector_block(F) snes = PETSc.SNES().create(MPI.COMM_WORLD) snes.setTolerances(rtol=1.0e-15, max_it=10) snes.getKSP().setType("preonly") snes.getKSP().getPC().setType("lu") problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs) snes.setFunction(problem.F_block, Fvec) snes.setJacobian(problem.J_block, J=Jmat, P=None) u.interpolate(initial_guess_u) p.interpolate(initial_guess_p) x = create_vector_block(F) scatter_local_vectors(x, [u.vector.array_r, p.vector.array_r], [(u.function_space.dofmap.index_map, u.function_space.dofmap.index_map_bs), (p.function_space.dofmap.index_map, p.function_space.dofmap.index_map_bs)]) x.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) snes.solve(None, x) assert snes.getKSP().getConvergedReason() > 0 assert snes.getConvergedReason() > 0 return x.norm() def nested_solve(): """Nested version""" Jmat = create_matrix_nest(J) assert Jmat.getType() == "nest" Fvec = create_vector_nest(F) assert Fvec.getType() == "nest" snes = PETSc.SNES().create(MPI.COMM_WORLD) snes.setTolerances(rtol=1.0e-15, max_it=10) nested_IS = Jmat.getNestISs() snes.getKSP().setType("gmres") snes.getKSP().setTolerances(rtol=1e-12) snes.getKSP().getPC().setType("fieldsplit") snes.getKSP().getPC().setFieldSplitIS(["u", nested_IS[0][0]], ["p", nested_IS[1][1]]) ksp_u, ksp_p = snes.getKSP().getPC().getFieldSplitSubKSP() ksp_u.setType("preonly") ksp_u.getPC().setType('lu') ksp_p.setType("preonly") ksp_p.getPC().setType('lu') problem = NonlinearPDE_SNESProblem(F, J, [u, p], bcs) snes.setFunction(problem.F_nest, Fvec) snes.setJacobian(problem.J_nest, J=Jmat, P=None) u.interpolate(initial_guess_u) p.interpolate(initial_guess_p) x = create_vector_nest(F) assert x.getType() == "nest" for x_soln_pair in zip(x.getNestSubVecs(), (u, p)): x_sub, soln_sub = x_soln_pair soln_sub.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) soln_sub.vector.copy(result=x_sub) x_sub.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) snes.solve(None, x) assert snes.getKSP().getConvergedReason() > 0 assert snes.getConvergedReason() > 0 return x.norm() def monolithic_solve(): """Monolithic version""" E = P * P W = FunctionSpace(mesh, E) U = Function(W) dU = ufl.TrialFunction(W) u0, u1 = ufl.split(U) v0, v1 = ufl.TestFunctions(W) F = inner((u0**2 + 1) * ufl.grad(u0), ufl.grad(v0)) * dx \ + inner((u1**2 + 1) * ufl.grad(u1), ufl.grad(v1)) * dx \ - inner(f, v0) * ufl.dx - inner(g, v1) * dx J = derivative(F, U, dU) F, J = form(F), form(J) u0_bc = Function(V0) u0_bc.interpolate(bc_val_0) u1_bc = Function(V1) u1_bc.interpolate(bc_val_1) bdofsW0_V0 = locate_dofs_topological((W.sub(0), V0), facetdim, bndry_facets) bdofsW1_V1 = locate_dofs_topological((W.sub(1), V1), facetdim, bndry_facets) bcs = [ dirichletbc(u0_bc, bdofsW0_V0, W.sub(0)), dirichletbc(u1_bc, bdofsW1_V1, W.sub(1)) ] Jmat = create_matrix(J) Fvec = create_vector(F) snes = PETSc.SNES().create(MPI.COMM_WORLD) snes.setTolerances(rtol=1.0e-15, max_it=10) snes.getKSP().setType("preonly") snes.getKSP().getPC().setType("lu") problem = NonlinearPDE_SNESProblem(F, J, U, bcs) snes.setFunction(problem.F_mono, Fvec) snes.setJacobian(problem.J_mono, J=Jmat, P=None) U.sub(0).interpolate(initial_guess_u) U.sub(1).interpolate(initial_guess_p) x = create_vector(F) x.array = U.vector.array_r snes.solve(None, x) assert snes.getKSP().getConvergedReason() > 0 assert snes.getConvergedReason() > 0 return x.norm() norm0 = blocked_solve() norm1 = nested_solve() norm2 = monolithic_solve() assert norm1 == pytest.approx(norm0, 1.0e-12) assert norm2 == pytest.approx(norm0, 1.0e-12)
msh, dim=1, marker=lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose( x[0], 2.0))) # We now find the degrees-of-freedom that are associated with the # boundary facets using {py:func}`locate_dofs_topological # <dolfinx.fem.locate_dofs_topological>` dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets) # and use {py:func}`dirichletbc <dolfinx.fem.dirichletbc>` to create a # {py:class}`DirichletBCMetaClass <dolfinx.fem.DirichletBCMetaClass>` # class that represents the boundary condition bc = fem.dirichletbc(value=ScalarType(0), dofs=dofs, V=V) # Next, we express the variational problem using UFL. # + u = ufl.TrialFunction(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(msh) f = 10 * ufl.exp(-((x[0] - 0.5)**2 + (x[1] - 0.5)**2) / 0.02) g = ufl.sin(5 * x[0]) a = inner(grad(u), grad(v)) * dx L = inner(f, v) * dx + inner(g, v) * ds # - # We create a {py:class}`LinearProblem <dolfinx.fem.LinearProblem>` # object that brings together the variational problem, the Dirichlet
def demo_periodic3D(celltype: CellType): # Create mesh and finite element if celltype == CellType.tetrahedron: # Tet setup N = 10 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N) V = fem.VectorFunctionSpace(mesh, ("CG", 1)) else: # Hex setup N = 10 mesh = create_unit_cube(MPI.COMM_WORLD, N, N, N, CellType.hexahedron) V = fem.VectorFunctionSpace(mesh, ("CG", 2)) def dirichletboundary(x: NDArray[np.float64]) -> NDArray[np.bool_]: return np.logical_or( np.logical_or(np.isclose(x[1], 0), np.isclose(x[1], 1)), np.logical_or(np.isclose(x[2], 0), np.isclose(x[2], 1))) # Create Dirichlet boundary condition zero = PETSc.ScalarType([0, 0, 0]) geometrical_dofs = fem.locate_dofs_geometrical(V, dirichletboundary) bc = fem.dirichletbc(zero, geometrical_dofs, V) bcs = [bc] def PeriodicBoundary(x): return np.isclose(x[0], 1) facets = locate_entities_boundary(mesh, mesh.topology.dim - 1, PeriodicBoundary) arg_sort = np.argsort(facets) mt = meshtags(mesh, mesh.topology.dim - 1, facets[arg_sort], np.full(len(facets), 2, dtype=np.int32)) def periodic_relation(x): out_x = np.zeros(x.shape) out_x[0] = 1 - x[0] out_x[1] = x[1] out_x[2] = x[2] return out_x with Timer("~~Periodic: Compute mpc condition"): mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_periodic_constraint_topological(V.sub(0), mt, 2, periodic_relation, bcs, 1) mpc.finalize() # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(grad(u), grad(v)) * dx x = SpatialCoordinate(mesh) dx_ = x[0] - 0.9 dy_ = x[1] - 0.5 dz_ = x[2] - 0.1 f = as_vector((x[0] * sin(5.0 * pi * x[1]) + 1.0 * exp(-(dx_ * dx_ + dy_ * dy_ + dz_ * dz_) / 0.02), 0.1 * dx_ * dz_, 0.1 * dx_ * dy_)) rhs = inner(f, v) * dx petsc_options: Dict[str, Union[str, float, int]] if complex_mode: rtol = 1e-16 petsc_options = {"ksp_type": "preonly", "pc_type": "lu"} else: rtol = 1e-8 petsc_options = { "ksp_type": "cg", "ksp_rtol": rtol, "pc_type": "hypre", "pc_hypre_typ": "boomeramg", "pc_hypre_boomeramg_max_iter": 1, "pc_hypre_boomeramg_cycle_type": "v", "pc_hypre_boomeramg_print_statistics": 1 } problem = LinearProblem(a, rhs, mpc, bcs, petsc_options=petsc_options) u_h = problem.solve() # --------------------VERIFICATION------------------------- print("----Verification----") u_ = fem.Function(V) u_.x.array[:] = 0 org_problem = fem.petsc.LinearProblem(a, rhs, u=u_, bcs=bcs, petsc_options=petsc_options) with Timer("~Periodic: Unconstrained solve"): org_problem.solve() it = org_problem.solver.getIterationNumber() print(f"Unconstrained solver iterations: {it}") # Write solutions to file ext = "tet" if celltype == CellType.tetrahedron else "hex" u_.name = "u_" + ext + "_unconstrained" # NOTE: Workaround as tabulate dof coordinates does not like extra ghosts u_out = fem.Function(V) old_local = u_out.x.map.size_local * u_out.x.bs old_ghosts = u_out.x.map.num_ghosts * u_out.x.bs mpc_local = u_h.x.map.size_local * u_h.x.bs assert (old_local == mpc_local) u_out.x.array[:old_local + old_ghosts] = u_h.x.array[:mpc_local + old_ghosts] u_out.name = "u_" + ext fname = f"results/demo_periodic3d_{ext}.bp" out_periodic = VTXWriter(MPI.COMM_WORLD, fname, u_out) out_periodic.write(0) out_periodic.close() root = 0 with Timer("~Demo: Verification"): dolfinx_mpc.utils.compare_mpc_lhs(org_problem.A, problem.A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(org_problem.b, problem.b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(org_problem.A, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(org_problem.b, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc, rtol=rtol)
def demo_elasticity(): mesh = create_unit_square(MPI.COMM_WORLD, 10, 10) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) # Generate Dirichlet BC on lower boundary (Fixed) def boundaries(x): return np.isclose(x[0], np.finfo(float).eps) facets = locate_entities_boundary(mesh, 1, boundaries) topological_dofs = fem.locate_dofs_topological(V, 1, facets) bc = fem.dirichletbc(np.array([0, 0], dtype=PETSc.ScalarType), topological_dofs, V) bcs = [bc] # Define variational problem u = TrialFunction(V) v = TestFunction(V) # Elasticity parameters E = PETSc.ScalarType(1.0e4) nu = 0.0 mu = fem.Constant(mesh, E / (2.0 * (1.0 + nu))) lmbda = fem.Constant(mesh, E * nu / ((1.0 + nu) * (1.0 - 2.0 * nu))) # Stress computation def sigma(v): return (2.0 * mu * sym(grad(v)) + lmbda * tr(sym(grad(v))) * Identity(len(v))) x = SpatialCoordinate(mesh) # Define variational problem u = TrialFunction(V) v = TestFunction(V) a = inner(sigma(u), grad(v)) * dx rhs = inner(as_vector((0, (x[0] - 0.5) * 10**4 * x[1])), v) * dx # Create MPC def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.9}} mpc = MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, 1, 1) mpc.finalize() # Solve Linear problem petsc_options = {"ksp_type": "preonly", "pc_type": "lu"} problem = LinearProblem(a, rhs, mpc, bcs=bcs, petsc_options=petsc_options) u_h = problem.solve() u_h.name = "u_mpc" with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity.xdmf", "w") as outfile: outfile.write_mesh(mesh) outfile.write_function(u_h) # Solve the MPC problem using a global transformation matrix # and numpy solvers to get reference values bilinear_form = fem.form(a) A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() linear_form = fem.form(rhs) L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) solver.setOperators(A_org) u_ = fem.Function(V) solver.solve(L_org, u_.vector) u_.x.scatter_forward() u_.name = "u_unconstrained" with XDMFFile(MPI.COMM_WORLD, "results/demo_elasticity.xdmf", "a") as outfile: outfile.write_function(u_) outfile.close() root = 0 with Timer("~Demo: Verification"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, problem.A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, problem.b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(u_h.vector, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) # Print out master-slave connectivity for the first slave master_owner = None master_data = None slave_owner = None if mpc.num_local_slaves > 0: slave_owner = MPI.COMM_WORLD.rank bs = mpc.function_space.dofmap.index_map_bs slave = mpc.slaves[0] print("Constrained: {0:.5e}\n Unconstrained: {1:.5e}".format( u_h.x.array[slave], u_.vector.array[slave])) master_owner = mpc._cpp_object.owners.links(slave)[0] _masters = mpc.masters master = _masters.links(slave)[0] glob_master = mpc.function_space.dofmap.index_map.local_to_global( [master // bs])[0] coeffs, offs = mpc.coefficients() master_data = [ glob_master * bs + master % bs, coeffs[offs[slave]:offs[slave + 1]][0] ] # If master not on proc send info to this processor if MPI.COMM_WORLD.rank != master_owner: MPI.COMM_WORLD.send(master_data, dest=master_owner, tag=1) else: print("Master*Coeff: {0:.5e}".format( coeffs[offs[slave]:offs[slave + 1]][0] * u_h.x.array[_masters.links(slave)[0]])) # As a processor with a master is not aware that it has a master, # Determine this so that it can receive the global dof and coefficient master_recv = MPI.COMM_WORLD.allgather(master_owner) for master in master_recv: if master is not None: master_owner = master break if slave_owner != master_owner and MPI.COMM_WORLD.rank == master_owner: dofmap = mpc.function_space.dofmap bs = dofmap.index_map_bs in_data = MPI.COMM_WORLD.recv(source=MPI.ANY_SOURCE, tag=1) num_local = dofmap.index_map.size_local + dofmap.index_map.num_ghosts l2g = dofmap.index_map.local_to_global( np.arange(num_local, dtype=np.int32)) l_index = np.flatnonzero(l2g == in_data[0] // bs)[0] print("Master*Coeff (on other proc): {0:.5e}".format( u_h.x.array[l_index * bs + in_data[0] % bs] * in_data[1]))
#Function that returns 'TRUE' if the point of the mesh is in the region you want #to apply the BC. def BC_points(x): #x[0] is the vector of X-coordinate of all points ; x[1] is the vector of Y-coordinate return np.logical_and( np.logical_or(np.isclose(x[0], -L / 2), np.isclose(x[0], L / 2)), np.isclose(x[1], 0)) BC_entities = dolfinx.mesh.locate_entities_boundary(mesh, 0, BC_points) BC_dofs = dolfinx.fem.locate_dofs_topological(V_u, 0, BC_entities) u_.interpolate(lambda x: (np.zeros_like(x[0]), np.zeros_like(x[1]))) #FOR IMPOSED FORCE : if parameters['loading']['type'] == 'IF': bcs_u = [dirichletbc(u_, BC_dofs)] #FOR IMPOSED DISPLACEMENT : if parameters['loading']['type'] == 'ID': def ID_points(x): return np.logical_and( np.equal(x[1], h), np.logical_and(np.greater_equal(x[0], -1 * n), np.less_equal(x[0], n))) ID_entities = dolfinx.mesh.locate_entities_boundary(mesh, 0, ID_points) ID_dofs = dolfinx.fem.locate_dofs_topological(V_u, 0, ID_entities) u_imposed.interpolate(lambda x: (np.zeros_like(x[0]), -1 * parameters[ 'loading']['max'] * np.ones_like(x[1]))) bcs_u = [dirichletbc(u_, BC_dofs), dirichletbc(u_imposed, ID_dofs)]
def test_vector_possion(Nx, Ny, slave_space, master_space, get_assemblers): # noqa: F811 assemble_matrix, assemble_vector = get_assemblers # Create mesh and function space mesh = create_unit_square(MPI.COMM_WORLD, Nx, Ny) V = fem.VectorFunctionSpace(mesh, ("Lagrange", 1)) def boundary(x): return np.isclose(x.T, [0, 0, 0]).all(axis=1) # Define boundary conditions (HAS TO BE NON-MASTER NODES) u_bc = fem.Function(V) with u_bc.vector.localForm() as u_local: u_local.set(0.0) bdofsV = fem.locate_dofs_geometrical(V, boundary) bc = fem.dirichletbc(u_bc, bdofsV) bcs = [bc] # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) x = ufl.SpatialCoordinate(mesh) f = ufl.as_vector((-5 * x[1], 7 * x[0])) a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx rhs = ufl.inner(f, v) * ufl.dx bilinear_form = fem.form(a) linear_form = fem.form(rhs) # Setup LU solver solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType(PETSc.KSP.Type.PREONLY) solver.getPC().setType(PETSc.PC.Type.LU) # Create multipoint constraint def l2b(li): return np.array(li, dtype=np.float64).tobytes() s_m_c = {l2b([1, 0]): {l2b([1, 1]): 0.1, l2b([0.5, 1]): 0.3}} mpc = dolfinx_mpc.MultiPointConstraint(V) mpc.create_general_constraint(s_m_c, slave_space, master_space) mpc.finalize() with Timer("~TEST: Assemble matrix"): A = assemble_matrix(bilinear_form, mpc, bcs=bcs) with Timer("~TEST: Assemble vector"): b = dolfinx_mpc.assemble_vector(linear_form, mpc) dolfinx_mpc.apply_lifting(b, [bilinear_form], [bcs], mpc) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(b, bcs) solver.setOperators(A) uh = b.copy() uh.set(0) solver.solve(b, uh) uh.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) mpc.backsubstitution(uh) # Generate reference matrices for unconstrained problem A_org = fem.petsc.assemble_matrix(bilinear_form, bcs) A_org.assemble() L_org = fem.petsc.assemble_vector(linear_form) fem.petsc.apply_lifting(L_org, [bilinear_form], [bcs]) L_org.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) fem.petsc.set_bc(L_org, bcs) root = 0 comm = mesh.comm with Timer("~TEST: Compare"): dolfinx_mpc.utils.compare_mpc_lhs(A_org, A, mpc, root=root) dolfinx_mpc.utils.compare_mpc_rhs(L_org, b, mpc, root=root) # Gather LHS, RHS and solution on one process A_csr = dolfinx_mpc.utils.gather_PETScMatrix(A_org, root=root) K = dolfinx_mpc.utils.gather_transformation_matrix(mpc, root=root) L_np = dolfinx_mpc.utils.gather_PETScVector(L_org, root=root) u_mpc = dolfinx_mpc.utils.gather_PETScVector(uh, root=root) if MPI.COMM_WORLD.rank == root: KTAK = K.T * A_csr * K reduced_L = K.T @ L_np # Solve linear system d = scipy.sparse.linalg.spsolve(KTAK, reduced_L) # Back substitution to full solution vector uh_numpy = K @ d assert np.allclose(uh_numpy, u_mpc) list_timings(comm, [TimingType.wall])
lambda x: np.isclose(x[0], Lx)) dofs_u_left = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], 0.0)) dofs_u_right = locate_dofs_geometrical(V_u, lambda x: np.isclose(x[0], Lx)) # Set Bcs Function zero_u.interpolate(lambda x: (np.zeros_like(x[0]), np.zeros_like(x[1]))) zero_alpha.interpolate((lambda x: np.zeros_like(x[0]))) u_.interpolate(lambda x: (np.ones_like(x[0]), 0 * np.ones_like(x[1]))) alpha_lb.interpolate(lambda x: np.zeros_like(x[0])) alpha_ub.interpolate(lambda x: np.ones_like(x[0])) for f in [zero_u, zero_alpha, u_, alpha_lb, alpha_ub]: f.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) bc_u_left = dirichletbc(np.array([0, 0], dtype=PETSc.ScalarType), dofs_u_left, V_u) # import pdb; pdb.set_trace() bc_u_right = dirichletbc(u_, dofs_u_right) bcs_u = [bc_u_left, bc_u_right] bcs_alpha = [ dirichletbc( np.array(0, dtype=PETSc.ScalarType), np.concatenate([dofs_alpha_left, dofs_alpha_right]), V_alpha, ) ] set_bc(alpha_ub.vector, bcs_alpha)
def test_eigen_assembly(tempdir): # noqa: F811 """Compare assembly into scipy.CSR matrix with PETSc assembly""" def compile_eigen_csr_assembler_module(): dolfinx_pc = dolfinx.pkgconfig.parse("dolfinx") eigen_dir = dolfinx.pkgconfig.parse("eigen3")["include_dirs"] cpp_code_header = f""" <% setup_pybind11(cfg) cfg['include_dirs'] = {dolfinx_pc["include_dirs"] + [petsc4py.get_include()] + [pybind11.get_include()] + [str(pybind_inc())] + eigen_dir} cfg['compiler_args'] = ["-std=c++17", "-Wno-comment"] cfg['libraries'] = {dolfinx_pc["libraries"]} cfg['library_dirs'] = {dolfinx_pc["library_dirs"]} %> """ cpp_code = """ #include <pybind11/pybind11.h> #include <pybind11/eigen.h> #include <pybind11/stl.h> #include <vector> #include <Eigen/Sparse> #include <petscsys.h> #include <dolfinx/fem/assembler.h> #include <dolfinx/fem/DirichletBC.h> #include <dolfinx/fem/Form.h> template<typename T> Eigen::SparseMatrix<T, Eigen::RowMajor> assemble_csr(const dolfinx::fem::Form<T>& a, const std::vector<std::shared_ptr<const dolfinx::fem::DirichletBC<T>>>& bcs) { std::vector<Eigen::Triplet<T>> triplets; auto mat_add = [&triplets](const xtl::span<const std::int32_t>& rows, const xtl::span<const std::int32_t>& cols, const xtl::span<const T>& v) { for (std::size_t i = 0; i < rows.size(); ++i) for (std::size_t j = 0; j < cols.size(); ++j) triplets.emplace_back(rows[i], cols[j], v[i * cols.size() + j]); return 0; }; dolfinx::fem::assemble_matrix(mat_add, a, bcs); auto map0 = a.function_spaces().at(0)->dofmap()->index_map; int bs0 = a.function_spaces().at(0)->dofmap()->index_map_bs(); auto map1 = a.function_spaces().at(1)->dofmap()->index_map; int bs1 = a.function_spaces().at(1)->dofmap()->index_map_bs(); Eigen::SparseMatrix<T, Eigen::RowMajor> mat( bs0 * (map0->size_local() + map0->num_ghosts()), bs1 * (map1->size_local() + map1->num_ghosts())); mat.setFromTriplets(triplets.begin(), triplets.end()); return mat; } PYBIND11_MODULE(eigen_csr, m) { m.def("assemble_matrix", &assemble_csr<PetscScalar>); } """ path = pathlib.Path(tempdir) open(pathlib.Path(tempdir, "eigen_csr.cpp"), "w").write(cpp_code + cpp_code_header) rel_path = path.relative_to(pathlib.Path(__file__).parent) p = str(rel_path).replace("/", ".") + ".eigen_csr" return cppimport.imp(p) def assemble_csr_matrix(a, bcs): """Assemble bilinear form into an SciPy CSR matrix, in serial.""" module = compile_eigen_csr_assembler_module() A = module.assemble_matrix(a, bcs) if a.function_spaces[0] is a.function_spaces[1]: for bc in bcs: if a.function_spaces[0].contains(bc.function_space): bc_dofs, _ = bc.dof_indices() # See https://github.com/numpy/numpy/issues/14132 # for why we copy bc_dofs as a work-around dofs = bc_dofs.copy() A[dofs, dofs] = 1.0 return A mesh = create_unit_square(MPI.COMM_SELF, 12, 12) Q = FunctionSpace(mesh, ("Lagrange", 1)) u = ufl.TrialFunction(Q) v = ufl.TestFunction(Q) a = form(ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx) bdofsQ = locate_dofs_geometrical( Q, lambda x: np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0))) bc = dirichletbc(PETSc.ScalarType(1), bdofsQ, Q) A1 = assemble_matrix(a, [bc]) A1.assemble() A2 = assemble_csr_matrix(a, [bc]) assert np.isclose(A1.norm(), scipy.sparse.linalg.norm(A2))
def facet_normal_approximation(V, mt: _cpp.mesh.MeshTags_int32, mt_id: int, tangent=False, jit_params: dict = {}, form_compiler_params: dict = {}): """ Approximate the facet normal by projecting it into the function space for a set of facets Parameters ---------- V The function space to project into mt The `dolfinx.mesh.MeshTagsMetaClass` containing facet markers mt_id The id for the facets in `mt` we want to represent the normal at tangent To approximate the tangent to the facet set this flag to `True` jit_params Parameters used in CFFI JIT compilation of C code generated by FFCx. See `DOLFINx-documentation <https://github.com/FEniCS/dolfinx/blob/main/python/dolfinx/jit.py#L22-L37>` for all available parameters. Takes priority over all other parameter values. form_compiler_params Parameters used in FFCx compilation of this form. Run `ffcx - -help` at the commandline to see all available options. Takes priority over all other parameter values, except for `scalar_type` which is determined by DOLFINx. """ timer = _common.Timer("~MPC: Facet normal projection") comm = V.mesh.comm n = ufl.FacetNormal(V.mesh) nh = _fem.Function(V) u, v = ufl.TrialFunction(V), ufl.TestFunction(V) ds = ufl.ds(domain=V.mesh, subdomain_data=mt, subdomain_id=mt_id) if tangent: if V.mesh.geometry.dim == 1: raise ValueError("Tangent not defined for 1D problem") elif V.mesh.geometry.dim == 2: a = ufl.inner(u, v) * ds L = ufl.inner(ufl.as_vector([-n[1], n[0]]), v) * ds else: def tangential_proj(u, n): """ See for instance: https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf """ return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u c = _fem.Constant(V.mesh, [1, 1, 1]) a = ufl.inner(u, v) * ds L = ufl.inner(tangential_proj(c, n), v) * ds else: a = (ufl.inner(u, v) * ds) L = ufl.inner(n, v) * ds # Find all dofs that are not boundary dofs imap = V.dofmap.index_map all_blocks = np.arange(imap.size_local, dtype=np.int32) top_blocks = _fem.locate_dofs_topological(V, V.mesh.topology.dim - 1, mt.find(mt_id)) deac_blocks = all_blocks[np.isin(all_blocks, top_blocks, invert=True)] # Note there should be a better way to do this # Create sparsity pattern only for constraint + bc bilinear_form = _fem.form(a, jit_params=jit_params, form_compiler_params=form_compiler_params) pattern = _fem.create_sparsity_pattern(bilinear_form) pattern.insert_diagonal(deac_blocks) pattern.assemble() u_0 = _fem.Function(V) u_0.vector.set(0) bc_deac = _fem.dirichletbc(u_0, deac_blocks) A = _cpp.la.petsc.create_matrix(comm, pattern) A.zeroEntries() # Assemble the matrix with all entries form_coeffs = _cpp.fem.pack_coefficients(bilinear_form) form_consts = _cpp.fem.pack_constants(bilinear_form) _cpp.fem.petsc.assemble_matrix(A, bilinear_form, form_consts, form_coeffs, [bc_deac]) if bilinear_form.function_spaces[0] is bilinear_form.function_spaces[1]: A.assemblyBegin(PETSc.Mat.AssemblyType.FLUSH) A.assemblyEnd(PETSc.Mat.AssemblyType.FLUSH) _cpp.fem.petsc.insert_diagonal(A, bilinear_form.function_spaces[0], [bc_deac], 1.0) A.assemble() linear_form = _fem.form(L, jit_params=jit_params, form_compiler_params=form_compiler_params) b = _fem.petsc.assemble_vector(linear_form) _fem.petsc.apply_lifting(b, [bilinear_form], [[bc_deac]]) b.ghostUpdate(addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE) _fem.petsc.set_bc(b, [bc_deac]) # Solve Linear problem solver = PETSc.KSP().create(MPI.COMM_WORLD) solver.setType("cg") solver.rtol = 1e-8 solver.setOperators(A) solver.solve(b, nh.vector) nh.vector.ghostUpdate(addv=PETSc.InsertMode.INSERT, mode=PETSc.ScatterMode.FORWARD) timer.stop() return nh
return is_close left_facets = dolfinx.mesh.locate_entities_boundary(mesh, mesh.topology.dim - 1, left) left_dofs = dolfinx.fem.locate_dofs_topological(V, mesh.topology.dim - 1, left_facets) right_facets = dolfinx.mesh.locate_entities_boundary(mesh, mesh.topology.dim - 1, left) right_dofs = dolfinx.fem.locate_dofs_topological(V, mesh.topology.dim - 1, right_facets) bcs = [dirichletbc(zero, left_dofs), dirichletbc(one, right_dofs)] u = Function(V) energy = (ell * ufl.inner(ufl.grad(u), ufl.grad(u)) + u / ell) * ufl.dx denergy = ufl.derivative(energy, u, ufl.TestFunction(V)) ddenergy = ufl.derivative(denergy, u, ufl.TrialFunction(V)) problem = SNESSolver( denergy, u, bcs, bounds=(zero, one), petsc_options=parameters.get("solvers").get("damage").get("snes"), prefix="vi", )