示例#1
0
def test_equivalence():
    u = SimpleDomain(1, 5)
    uu = CompositeDomain([u, u])
    r = MutableFuzzySet(uu)
    r.set_value_at((1, 1), 1)
    r.set_value_at((2, 2), 1)
    r.set_value_at((3, 3), 1)
    r.set_value_at((4, 4), 1)
    r.set_value_at((1, 2), 0.3)
    r.set_value_at((2, 1), 0.3)
    r.set_value_at((2, 3), 0.5)
    r.set_value_at((3, 2), 0.5)
    r.set_value_at((3, 4), 0.2)
    r.set_value_at((4, 3), 0.2)

    r2 = r

    print("Pocetna relacija je neizrazita relacija ekvivalencije? {}".format(
        is_fuzzy_equivalence(r)))

    for i in range(1, 3):
        r2 = composition_of_binary_relations(r2, r)
        print("Broj odradjenih kompozicija: {}".format(i))
        print("Relacija je: ")

        for domain_element in r2.domain.domain_elements:
            print("mu({}) = {}".format(domain_element,
                                       r2.get_value_at(domain_element)))

        print("Ova relacija je neizrazita relacija ekvivalencije? {}".format(
            is_fuzzy_equivalence(r2)))
示例#2
0
def test_composition():
    """
	Test made for testing composition of 
	binary relations. Test is based 
	on example from slides (example from ha-03b slide 29/66).
	:return: None
	"""
    prvi = SimpleDomain(0, 4, "Pero")
    prvi2 = SimpleDomain(0, 5, "Pero")
    drugi = SimpleDomain(0, 5, "Branko")
    drugi2 = SimpleDomain(0, 3, "Branko")
    compos1 = CompositeDomain([prvi, prvi2], "Composite1")
    compos2 = CompositeDomain([drugi, drugi2], "Composite2")

    # example from ha-03b slide 29/66
    my_fuzz1 = MutableFuzzySet(compos1)
    my_fuzz2 = MutableFuzzySet(compos2)

    my_fuzz1.set_value_at((0, 0), 0.1)
    my_fuzz1.set_value_at((0, 1), 0.7)
    my_fuzz1.set_value_at((0, 2), 0.5)
    my_fuzz1.set_value_at((0, 3), 0.1)
    my_fuzz1.set_value_at((1, 0), 0.5)
    my_fuzz1.set_value_at((1, 1), 1.0)
    my_fuzz1.set_value_at((1, 2), 0.9)
    my_fuzz1.set_value_at((1, 3), 0.4)
    my_fuzz1.set_value_at((1, 3), 0.4)
    my_fuzz1.set_value_at((2, 0), 0.2)
    my_fuzz1.set_value_at((2, 1), 0.1)
    my_fuzz1.set_value_at((2, 2), 0.6)
    my_fuzz1.set_value_at((2, 3), 0.9)

    my_fuzz2.set_value_at((0, 0), 1.0)
    my_fuzz2.set_value_at((0, 1), 0.2)
    my_fuzz2.set_value_at((1, 0), 0.7)
    my_fuzz2.set_value_at((1, 1), 0.5)
    my_fuzz2.set_value_at((2, 0), 0.3)
    my_fuzz2.set_value_at((2, 1), 0.9)
    my_fuzz2.set_value_at((3, 0), 0.0)
    my_fuzz2.set_value_at((3, 1), 0.4)

    composition_of_binary_relations(my_fuzz1, my_fuzz2)
示例#3
0
def test_composition2():
    u1 = SimpleDomain(1, 5)
    u2 = SimpleDomain(1, 4)
    u3 = SimpleDomain(1, 5)

    u1u2 = CompositeDomain([u1, u2])
    r1 = MutableFuzzySet(u1u2)
    r1.set_value_at((1, 1), 0.3)
    r1.set_value_at((1, 2), 1)
    r1.set_value_at((3, 3), 0.5)
    r1.set_value_at((4, 3), 0.5)

    u2u3 = CompositeDomain([u2, u3])
    r2 = MutableFuzzySet(u2u3)
    r2.set_value_at((1, 1), 1)
    r2.set_value_at((2, 1), 0.5)
    r2.set_value_at((2, 2), 0.7)
    r2.set_value_at((3, 3), 1)
    r2.set_value_at((3, 4), 0.4)

    my_composition = composition_of_binary_relations(r1, r2)
    for domain_element in my_composition.domain.domain_elements:
        print("mu({}) = {}".format(
            domain_element, my_composition.get_value_at(domain_element)))
示例#4
0
def composition_of_binary_relations(fuzzy_set1, fuzzy_set2):
	"""
	Calculating composition of two relations.
	:param fuzzy_set1: FuzzySet (defined on domain UxV)
	:param fuzzy_set2: FuzzySet (defined on domain VxW)
	:return: FuzzySet (defined on domain UxW)
	"""
	# extracting domain elements of both sets
	domain_elements1 = fuzzy_set1.domain.domain_elements
	domain_elements2 = fuzzy_set2.domain.domain_elements

	# defining UxW space in which composition will be defined
	u = fuzzy_set1.domain.get_component(0).domain_elements
	w = fuzzy_set2.domain.get_component(1).domain_elements

	# creating two SimpleDomain instances which will
	# create CompositeDomain

	# REMINDER: SimpleDomain(first, last) does NOT
	# include last element, so there is +1 (so it will be included)
	u_domain = SimpleDomain(u[0], u[-1]+1)
	w_domain = SimpleDomain(w[0], w[-1]+1)

	len_u = len(u)+1
	len_w = len(w)+1

	# creating empty array in domain UxW filled with zeros
	my_array = numpy.zeros(shape=(len_u, len_w))

	# iterating over domain elements of first part of
	# composite domain
	for element in domain_elements1:

		# extracting row
		my_row = [item for item in domain_elements1 if element[0] == item[0]]

		# iterating over domain elements of second part of composite domain
		for element2 in domain_elements2:

			# extracting column
			my_col = [item for item in domain_elements2 if element2[1] == item[1]]

			# extracting row and column values (these are the values
			# that we will consider in finding maximum of minimum)
			row_values = [fuzzy_set1.member_dict[item] for item in my_row]
			col_values = [fuzzy_set2.member_dict[item] for item in my_col]

			# initializing max_min value to zero
			max_min = 0
			for row, col in zip(row_values, col_values):
				# if min(row, col) is larger than
				# current max_min, then set max_min to
				# to new value
				if min(row, col) > max_min:
					max_min = min(row, col)

			# my index has the row index from the first element,
			# and column index from the second element
			my_index = (element[0], element2[1])

			# set element in my_array on index element[0], element2[1]
			# to this calculated max_min value
			my_array[element[0], element2[1]] = max_min

	# creating composite domain out of two simple domains
	# created in the beginning
	compos_domain = CompositeDomain([u_domain, w_domain])

	# initializing MutableFuzzy set with compos_domain UxW
	composition_fuzzy = MutableFuzzySet(compos_domain)

	# writing calculated values to new composition_fuzzy
	# FuzzySet
	for (x, y), value in numpy.ndenumerate(my_array):
		try:
			composition_fuzzy.set_value_at((x, y), value)
		except ValueError:
			pass
	return composition_fuzzy
示例#5
0
from domain import SimpleDomain
from sets import MutableFuzzySet, CalculatedFuzzySet
from operations import zadeh_not
"""
This module is used for defining domains of input
and control variables, as well as fuzzy sets
used for control of the boat.
For example: dangerously_close, small_velocity etc.
"""
distance_domain = SimpleDomain(0, 1301)
velocity_domain = SimpleDomain(20, 51)
direction_domain = SimpleDomain(0, 2)
acceleration_domain = SimpleDomain(-10, 11)
angle_domain = SimpleDomain(-90, 91)

correct_direction = MutableFuzzySet(direction_domain)
correct_direction.set_value_at(0, 0)
correct_direction.set_value_at(1, 1)

dangerously_close = CalculatedFuzzySet(distance_domain)
dangerously_close.set_calculated_memberships("l", alpha=0.02, beta=0.05)

close = CalculatedFuzzySet(distance_domain)
close.set_calculated_memberships("l", alpha=0.05, beta=0.07)

not_close = zadeh_not(close)

small_velocity = CalculatedFuzzySet(velocity_domain)
small_velocity.set_calculated_memberships("l", alpha=0.2, beta=0.95)

large_acceleration = CalculatedFuzzySet(acceleration_domain)
示例#6
0
from fuzzy import CalculatedFuzzySet, StandardFuzzySets, Debug
from domain import SimpleDomain


ANGLE_DOMAIN = SimpleDomain(-90, 91)
DISTANCE_DOMAIN = SimpleDomain(0, 1301)
VELOCITY_DOMAIN = SimpleDomain(0, 101)
ACCELERATION_DOMAIN = SimpleDomain(-50, 51)


TURN_LEFT = CalculatedFuzzySet(ANGLE_DOMAIN, StandardFuzzySets.gamma_function(150, 180))
TURN_RIGHT = CalculatedFuzzySet(ANGLE_DOMAIN, StandardFuzzySets.l_function(0, 30))

CLOSE = CalculatedFuzzySet(DISTANCE_DOMAIN, StandardFuzzySets.l_function(40, 60))
FAR = CalculatedFuzzySet(DISTANCE_DOMAIN, StandardFuzzySets.gamma_function(60, 75))

WRONG_WAY = CalculatedFuzzySet(DISTANCE_DOMAIN, StandardFuzzySets.l_function(0, 1))

TOO_FAST = CalculatedFuzzySet(VELOCITY_DOMAIN, StandardFuzzySets.gamma_function(60, 70))
TOO_SLOW = CalculatedFuzzySet(VELOCITY_DOMAIN, StandardFuzzySets.l_function(25, 50))

SPEED_UP = CalculatedFuzzySet(ACCELERATION_DOMAIN, StandardFuzzySets.lambda_function(55, 60, 65))
SLOW_DOWN = CalculatedFuzzySet(ACCELERATION_DOMAIN, StandardFuzzySets.l_function(40, 50))


if __name__ == '__main__':
    Debug.print(CLOSE)
    Debug.print(FAR)
示例#7
0
def test_relation_characteristics():
    """
	Test made for testing characteristics of fuzzy relations.
	This test will test most of the functions from relation.py
	that return boolean.
	:return: None
	"""
    u = SimpleDomain(1, 6)
    u2 = CompositeDomain([u, u])

    r1 = MutableFuzzySet(u2)
    r1.set_value_at((1, 1), 1)
    r1.set_value_at((2, 2), 1)
    r1.set_value_at((3, 3), 1)
    r1.set_value_at((4, 4), 1)
    r1.set_value_at((5, 5), 1)
    r1.set_value_at((3, 1), 0.5)
    r1.set_value_at((1, 3), 0.5)

    r2 = MutableFuzzySet(u2)
    r2.set_value_at((1, 1), 1)
    r2.set_value_at((2, 2), 1)
    r2.set_value_at((3, 3), 1)
    r2.set_value_at((4, 4), 1)
    r2.set_value_at((5, 5), 1)
    r2.set_value_at((3, 1), 0.5)
    r2.set_value_at((1, 3), 0.1)

    r3 = MutableFuzzySet(u2)
    r3.set_value_at((1, 1), 1)
    r3.set_value_at((2, 2), 1)
    r3.set_value_at((3, 3), 0.3)
    r3.set_value_at((4, 4), 1)
    r3.set_value_at((5, 5), 1)
    r3.set_value_at((1, 2), 0.6)
    r3.set_value_at((2, 1), 0.6)
    r3.set_value_at((2, 3), 0.7)
    r3.set_value_at((3, 2), 0.7)
    r3.set_value_at((3, 1), 0.5)
    r3.set_value_at((1, 3), 0.5)

    r4 = MutableFuzzySet(u2)
    r4.set_value_at((1, 1), 1)
    r4.set_value_at((2, 2), 1)
    r4.set_value_at((3, 3), 1)
    r4.set_value_at((4, 4), 1)
    r4.set_value_at((5, 5), 1)
    r4.set_value_at((1, 2), 0.4)
    r4.set_value_at((2, 1), 0.4)
    r4.set_value_at((2, 3), 0.5)
    r4.set_value_at((3, 2), 0.5)
    r4.set_value_at((1, 3), 0.4)
    r4.set_value_at((3, 1), 0.4)

    print("r1 je definiran nad UxU: {}".format(is_U_times_relation(r1)))
    print("r1 je simetricna: {}".format(is_symmetric(r1)))
    print("r2 je simetricna: {}".format(is_symmetric(r2)))
    print("r1 je refleksivna: {}".format(is_reflexive(r1)))
    print("r3 je refleksivna: {}".format(is_reflexive(r3)))
    print("r3 je max-min tranzitivna: {}".format(is_max_min_transitive(r3)))
    print("r4 je max-min tranzitivna: {}".format(is_max_min_transitive(r4)))
示例#8
0
		:param my_func: str ("step" or "gamma" etc)
		:return: None
		"""
        try:
            self.memberships = unitary_function(self.domain, my_func, **kwargs)
        except KeyError:
            self.memberships = my_func(self.domain)
        self.member_dict = dict([
            (domain_element, value)
            for (domain_element,
                 value) in zip(self.domain.domain_elements, self.memberships)
        ])


if __name__ == "__main__":
    simple_domain = SimpleDomain(1, 40, "Pero")
    my_fuzzy = MutableFuzzySet(simple_domain, "PeroSet")
    my_fuzzy.set_value_at(1, 0.4)
    try:
        my_fuzzy.set_value_at(2, 1.9)
    except ValueError:
        print("Correct error raised.")
    #my_fuzzy.print_fuzzy_set()
    lista = unitary_function(simple_domain, "l")
    # for index, item in enumerate(lista):
    # 	print("Index: {}, Element domene: {}, Vrijednost: {}".format(index, simple_domain.domain_elements[index], item))

    my_calculated = CalculatedFuzzySet(simple_domain)
    simp1 = SimpleDomain(1, 5, "bla")
    simp2 = SimpleDomain(1, 5, "bla2")
    my_comp = CompositeDomain([simp1, simp2])
示例#9
0
	fuzzy_t.set_name = "Ham_T_norm_{}_{}".format(fuzzy_set1.set_name, fuzzy_set2.set_name)
	return fuzzy_t

def hamSnorm(fuzzy_set1, fuzzy_set2, my_param=0.5):
	"""
	Implementation of Hamachers s-norm.
	This function receives two instances of FuzzySet 
	and returns new instance of FuzzySet class with 
	operation Hamachers s-norm calculated for 
	memberships values of two input FuzzySets.
	:param fuzzy_set1: instance of FuzzySet
	:param fuzzy_set2: instance of FuzzySet
	:return: fuzzy_s: instance of FuzzySet
	"""
	new_memberships = [0]*len(fuzzy_set1.domain.domain_elements)
	for index, (value1, value2) in enumerate(zip(fuzzy_set1.memberships, fuzzy_set2.memberships)):
		new_memberships[index] = (value1+value2-(2-my_param)*(value1*value2))/(1 - (1-my_param)*value1*value2)
	fuzzy_s = CalculatedFuzzySet(fuzzy_set1.domain)
	fuzzy_s.memberships = new_memberships
	fuzzy_s.set_name = "Ham_T_norm_{}_{}".format(fuzzy_set1.set_name, fuzzy_set2.set_name)
	return fuzzy_s

if __name__ == "__main__":
	my_domain = SimpleDomain(0, 20)
	my_calculated = CalculatedFuzzySet(my_domain)
	my_calculated2 = CalculatedFuzzySet(my_domain, my_func="l")

	my_set = zadeh_or(my_calculated, my_calculated2)
	t_norm = hamTnorm(my_calculated, my_calculated2)
	s_norm = hamSnorm(my_calculated2, my_calculated)