示例#1
0
def run():
    gcp_mount = doodad.MountGCP(gcp_path='secret_output',
                                mount_point='/output')
    mounts = [gcp_mount]

    launcher = doodad.GCPMode(gcp_bucket=GCP_BUCKET,
                              gcp_log_path='test_doodad/gcp_gpu_test',
                              gcp_project=GCP_PROJECT,
                              instance_type='n1-standard-1',
                              zone='us-west1-a',
                              gcp_image=GCP_IMAGE,
                              gcp_image_project=GCP_PROJECT,
                              use_gpu=True,
                              gpu_model='nvidia-tesla-t4')

    doodad.run_command(command='nvidia-smi > /output/secret.txt',
                       mode=launcher,
                       mounts=mounts,
                       verbose=True)
示例#2
0
def run():
    gcp_mount = doodad.MountGCP(gcp_path='secret_output',
                                mount_point='/output')
    local_mount = doodad.MountLocal(local_dir=TESTING_DIR,
                                    mount_point='/data',
                                    output=False)
    mounts = [local_mount, gcp_mount]

    launcher = doodad.GCPMode(gcp_bucket=GCP_BUCKET,
                              gcp_log_path='test_doodad/gcp_test',
                              gcp_project=GCP_PROJECT,
                              instance_type='f1-micro',
                              zone='us-west1-a',
                              gcp_image=GCP_IMAGE,
                              gcp_image_project=GCP_PROJECT)

    doodad.run_command(command='cat /data/secret.txt > /output/secret.txt',
                       mode=launcher,
                       mounts=mounts,
                       verbose=True)
示例#3
0
mounts.append(
    doodad.MountLocal(local_dir="~/code/d4rl",
                      mount_point="/code/d4rl",
                      pythonpath=True))
# mounts.append(doodad.MountLocal(local_dir='~/.d4rl/rlkit/%s' % dirname,
#                              mount_point='/datasets'))
mounts.append(
    doodad.MountLocal(local_dir="/data/doodad_results",
                      mount_point="/root/tmp/offlinerl",
                      output=True))

gcp_launcher = doodad.GCPMode(
    gcp_bucket="justin-doodad",
    gcp_log_path="doodad/logs/bear",
    gcp_project="qlearning000",
    instance_type="n1-standard-1",
    zone="us-west1-a",
    gcp_image="ubuntu-1804-docker-gpu",
    gcp_image_project="qlearning000",
)
local_launcher = doodad.LocalMode()

#!/bin/bash
# ALPHA=1.0
# PLR=3e-05
# VALUE_PENALTY=False
# DIVERGENCE=kl
# ENV=walker2d-medium-v0
# DATA=example
# B_CKPT=$HOME/tmp/offlinerl/learn/$ENV/train_bc/bc/0/0/agent_behavior
# python train_offline.py \
示例#4
0
mounts = []
#mounts.append(doodad.MountLocal(local_dir='~/code/batch_rl_aviral',
#                              mount_point='/code/batch_rl_private', pythonpath=True))
mounts.append(doodad.MountLocal(local_dir='~/code/d4rl',
                              mount_point='/code/d4rl', pythonpath=True))
#mounts.append(doodad.MountLocal(local_dir='~/.d4rl/rlkit/%s' % dirname,
#                              mount_point='/datasets'))
mounts.append(doodad.MountLocal(local_dir='/data/doodad_results/merge-random',
                                mount_point='/root/tmp/offlinerl', output=True))

gcp_launcher = doodad.GCPMode(
    gcp_bucket='justin-doodad',
    gcp_log_path='doodad/logs/bear',
    gcp_project='qlearning000',
    instance_type='n1-standard-1',
    zone='us-west1-a',
    gcp_image='ubuntu-1804-docker-gpu',
    gcp_image_project='qlearning000'
)
local_launcher = doodad.LocalMode()



"""
ENV=walker2d-medium-v0
python scripts/brac/train_offline.py \
  --alsologtostderr --sub_dir=0 \
  --env_name=$ENV --identifier="train_bc" \
  --agent_name=bc \
  --total_train_steps=300000 \