def run(): gcp_mount = doodad.MountGCP(gcp_path='secret_output', mount_point='/output') mounts = [gcp_mount] launcher = doodad.GCPMode(gcp_bucket=GCP_BUCKET, gcp_log_path='test_doodad/gcp_gpu_test', gcp_project=GCP_PROJECT, instance_type='n1-standard-1', zone='us-west1-a', gcp_image=GCP_IMAGE, gcp_image_project=GCP_PROJECT, use_gpu=True, gpu_model='nvidia-tesla-t4') doodad.run_command(command='nvidia-smi > /output/secret.txt', mode=launcher, mounts=mounts, verbose=True)
def run(): gcp_mount = doodad.MountGCP(gcp_path='secret_output', mount_point='/output') local_mount = doodad.MountLocal(local_dir=TESTING_DIR, mount_point='/data', output=False) mounts = [local_mount, gcp_mount] launcher = doodad.GCPMode(gcp_bucket=GCP_BUCKET, gcp_log_path='test_doodad/gcp_test', gcp_project=GCP_PROJECT, instance_type='f1-micro', zone='us-west1-a', gcp_image=GCP_IMAGE, gcp_image_project=GCP_PROJECT) doodad.run_command(command='cat /data/secret.txt > /output/secret.txt', mode=launcher, mounts=mounts, verbose=True)
mounts.append( doodad.MountLocal(local_dir="~/code/d4rl", mount_point="/code/d4rl", pythonpath=True)) # mounts.append(doodad.MountLocal(local_dir='~/.d4rl/rlkit/%s' % dirname, # mount_point='/datasets')) mounts.append( doodad.MountLocal(local_dir="/data/doodad_results", mount_point="/root/tmp/offlinerl", output=True)) gcp_launcher = doodad.GCPMode( gcp_bucket="justin-doodad", gcp_log_path="doodad/logs/bear", gcp_project="qlearning000", instance_type="n1-standard-1", zone="us-west1-a", gcp_image="ubuntu-1804-docker-gpu", gcp_image_project="qlearning000", ) local_launcher = doodad.LocalMode() #!/bin/bash # ALPHA=1.0 # PLR=3e-05 # VALUE_PENALTY=False # DIVERGENCE=kl # ENV=walker2d-medium-v0 # DATA=example # B_CKPT=$HOME/tmp/offlinerl/learn/$ENV/train_bc/bc/0/0/agent_behavior # python train_offline.py \
mounts = [] #mounts.append(doodad.MountLocal(local_dir='~/code/batch_rl_aviral', # mount_point='/code/batch_rl_private', pythonpath=True)) mounts.append(doodad.MountLocal(local_dir='~/code/d4rl', mount_point='/code/d4rl', pythonpath=True)) #mounts.append(doodad.MountLocal(local_dir='~/.d4rl/rlkit/%s' % dirname, # mount_point='/datasets')) mounts.append(doodad.MountLocal(local_dir='/data/doodad_results/merge-random', mount_point='/root/tmp/offlinerl', output=True)) gcp_launcher = doodad.GCPMode( gcp_bucket='justin-doodad', gcp_log_path='doodad/logs/bear', gcp_project='qlearning000', instance_type='n1-standard-1', zone='us-west1-a', gcp_image='ubuntu-1804-docker-gpu', gcp_image_project='qlearning000' ) local_launcher = doodad.LocalMode() """ ENV=walker2d-medium-v0 python scripts/brac/train_offline.py \ --alsologtostderr --sub_dir=0 \ --env_name=$ENV --identifier="train_bc" \ --agent_name=bc \ --total_train_steps=300000 \