) local_launcher = doodad.LocalMode() """ ENV=walker2d-medium-v0 python scripts/brac/train_offline.py \ --alsologtostderr --sub_dir=0 \ --env_name=$ENV --identifier="train_bc" \ --agent_name=bc \ --total_train_steps=300000 \ --n_train=1000000 \ --gin_bindings="train_eval_offline.model_params=((200, 200),)" \ --gin_bindings="train_eval_offline.batch_size=256" \ --gin_bindings="train_eval_offline.optimizers=(('adam', 5e-4),)" """ doodad.run_python( target='brac/train_offline.py', mode=local_launcher, mounts=mounts, docker_image='justinfu/brac_flow:0.3', verbose=True, cli_args='--alsologtostderr --save_freq=1000 --sub_dir=0 --env_name=%s --identifier="train_bc" --agent_name=bc --total_train_steps=300000 --n_train=1000000 --model_arch=0 --opt_params=0' % env_name #'--gin_bindings="train_eval_offline.model_params=((200, 200),)" ' + \ #'--gin_bindings="train_eval_offline.batch_size=256" ' + \ #'--gin_bindings="train_eval_offline.optimizers=((\'adam\', 5e-4),)"' )
# mount_point='/data/b_ckpt' # )) mounts.append( doodad.MountLocal( local_dir= "/data/doodad_results/merge-random/learn/flow-merge-random-v0/train_bc/bc/0/0/", mount_point="/data/b_ckpt", )) cli_args = ( "--alsologtostderr --sub_dir=auto --env_name={env_name} --agent_name={agent_type} --total_train_steps=500000 --model_arch=1 --opt_params=1 " + "--b_ckpt={b_ckpt} --value_penalty={value_penalty} ") cli_args = cli_args.format( env_name=env_name, agent_type="brac_primal", alpha=0.3, value_penalty=1, divergence="kl", b_ckpt="/data/b_ckpt/agent_behavior", ) doodad.run_python( target="brac/train_offline.py", mode=local_launcher, mounts=mounts, docker_image="justinfu/brac_flow:0.3", verbose=True, cli_args=cli_args, )
pythonpath=True, filter_dir=('data', '.git', 'awr_env'))) mounts.append( doodad.MountLocal(local_dir='~/code/d4rl', mount_point='/code/d4rl', pythonpath=True, filter_dir=('data', '.git', 'scripts'))) mounts.append( doodad.MountLocal(local_dir='~/.d4rl/rlkit/%s' % dirname, mount_point='/datasets')) mounts.append( doodad.MountLocal(local_dir='/data/doodad/awr', mount_point='/data', output=True)) gcp_launcher = doodad.GCPMode(gcp_bucket='justin-doodad', gcp_log_path='doodad/logs/bear', gcp_project='qlearning000', instance_type='n1-standard-1', zone='us-west1-a', gcp_image='ubuntu-1804-docker-gpu', gcp_image_project='qlearning000') local_launcher = doodad.LocalMode() doodad.run_python(target='scripts/run_flow.py', mode=local_launcher, mounts=mounts, docker_image='justinfu/awr_flow:0.1', verbose=True, cli_args='--output_dir=/data --env=' + env_name)