def compute_log_pys(drug_channel):

    print drug_channel

    seed = drugs_channels.index(drug_channel)
    print "seed =", seed
    npr.seed(seed)

    drug, channel = drug_channel

    num_expts, experiment_numbers, experiments = dr.load_crumb_data(
        drug, channel)

    concs = np.array([])
    responses = np.array([])
    for i in xrange(num_expts):
        concs = np.concatenate((concs, experiments[i][:, 0]))
        responses = np.concatenate((responses, experiments[i][:, 1]))

    print "responses:", responses

    num_pts = len(responses)
    pi_bit = dr.compute_pi_bit_of_log_likelihood(responses)

    n = 40
    c = 3
    temperatures = (np.arange(n + 1.) / n)**c

    num_models = 2

    for model in xrange(1, num_models + 1):
        print "model", model

        log_pys = np.zeros((n + 1, 2))
        log_pys[:, 0] = temperatures

        dr.define_model(model)

        log_py_file = dr.define_log_py_file(model, drug, channel)
        with open(log_py_file, "w") as outfile:
            outfile.write("# temperature, log(p(y|t))\n")

        for i, temperature in enumerate(temperatures):
            log_py = approx_log_py(responses, concs, num_pts, temperature,
                                   pi_bit, model, drug, channel)
            log_pys[i, 1] = log_py

        np.savetxt(log_py_file, log_pys)
        print "\n", log_pys
    return None
示例#2
0
                    action='store_true',
                    help='run hierarchical MCMC on all drugs and channels',
                    default=False)
parser.add_argument("--plot-data",
                    action='store_true',
                    help='plot data points on top of predicted curves',
                    default=False)
parser.add_argument(
    "--save-pdf",
    action='store_true',
    help=
    'save dose-response curves figure as pdf (in addition to png), but the file will probably be massive',
    default=False)
args = parser.parse_args()

dr.define_model(args.model)
temperature = 1
num_params = dr.num_params

dr.setup(args.data_file)
drugs_to_run, channels_to_run = dr.list_drug_channel_options(args.all)

num_x_pts = 50
alpha = 0.002  # this is the lowest value I've found that actually shows anything

for drug, channel in it.product(drugs_to_run, channels_to_run):

    try:
        num_expts, experiment_numbers, experiments = dr.load_crumb_data(
            drug, channel)
    except:
示例#3
0
def do_plot(drug_channel):
    global concs, responses

    fig = plt.figure(figsize=(5, 8))
    axes = {}
    axes[1] = fig.add_subplot(211)
    axes[2] = fig.add_subplot(212)#, sharey=axes[1])

    fsize = 14

    for model in xrange(1, num_models+1):

        dr.define_model(model)

        drug, channel = drug_channel
        num_expts, experiment_numbers, experiments = dr.load_crumb_data(drug, channel)
        figs_dir = dr.drug_channel_figs_dir(drug, channel)

        concs = np.array([])
        responses = np.array([])
        for i in xrange(num_expts):
            concs = np.concatenate((concs, experiments[i][:, 0]))
            responses = np.concatenate((responses, experiments[i][:, 1]))

        if model == 1:
            x0 = np.ones(2)
            sigma0 = 0.1
        elif model == 2:
            x0 = np.copy([pic50, hill])
            sigma0 = 0.01
        #x0[0] = 6.9

        opts = cma.CMAOptions()
        es = cma.CMAEvolutionStrategy(x0, sigma0, opts)
        while not es.stop():
            X = es.ask()
            f_vals = [sum_of_square_diffs(x, model) for x in X]
            es.tell(X, f_vals)
            es.disp()
        res = es.result()
        ss = res[1]
        pic50, hill = res[0]
        if model == 1:
            hill = 1

        conc_min = np.min(concs)
        conc_max = np.max(concs)

        num_pts = 501
        x_range = np.logspace(int(np.log10(conc_min))-1, int(np.log10(conc_max))+2, num_pts)
        predicted = dr.dose_response_model(x_range, hill, dr.pic50_to_ic50(pic50))



        #fig = plt.figure(figsize=(5,4))
        #ax = fig.add_subplot(111)
        axes[model].grid()
        axes[model].set_xscale('log')
        axes[model].set_ylim(0,100)
        axes[model].set_ylabel(r"% {} block".format(channel),fontsize=fsize)
        axes[model].set_xlabel(r"{} concentration ($\mu$M)".format(drug),fontsize=fsize)
        axes[model].plot(x_range, predicted, color='blue', lw=2, label="Best fit")
        axes[model].plot(concs, responses, 'o', color='orange', ms=10, label="Expt data")
        axes[model].legend(loc=2)
        axes[model].set_title("$M_{}, pIC50 = {}, Hill = {}, SS = {}$".format(model, round(pic50,2), round(hill,2), round(ss,2)),fontsize=fsize)
    #axes[2].set_yticklabels([])
    fig.tight_layout()
    #fig.savefig(figs_dir+"{}_{}_model_{}_best_fit.png".format(drug,channel,model))
    fig.savefig(all_figs_dir+"{}_{}_best_fits.png".format(drug, channel))
    fig.savefig(figs_dir+"{}_{}_best_fit.pdf".format(drug,channel))
    plt.close()
示例#4
0
def do_plot(drug_channel):
    global concs, responses

    fig = plt.figure(figsize=(5, 8))
    axes = {}
    axes[1] = fig.add_subplot(211)
    axes[2] = fig.add_subplot(212)  #, sharey=axes[1])

    fsize = 14

    for model in xrange(1, num_models + 1):

        dr.define_model(model)

        drug, channel = drug_channel
        num_expts, experiment_numbers, experiments = dr.load_crumb_data(
            drug, channel)
        figs_dir = dr.drug_channel_figs_dir(drug, channel)

        concs = np.array([])
        responses = np.array([])
        for i in xrange(num_expts):
            concs = np.concatenate((concs, experiments[i][:, 0]))
            responses = np.concatenate((responses, experiments[i][:, 1]))

        if model == 1:
            x0 = np.ones(2)
            sigma0 = 0.1
        elif model == 2:
            x0 = np.copy([pic50, hill])
            sigma0 = 0.01
        #x0[0] = 6.9

        opts = cma.CMAOptions()
        es = cma.CMAEvolutionStrategy(x0, sigma0, opts)
        while not es.stop():
            X = es.ask()
            f_vals = [sum_of_square_diffs(x, model) for x in X]
            es.tell(X, f_vals)
            es.disp()
        res = es.result()
        ss = res[1]
        pic50, hill = res[0]
        if model == 1:
            hill = 1

        conc_min = np.min(concs)
        conc_max = np.max(concs)

        num_pts = 501
        x_range = np.logspace(
            int(np.log10(conc_min)) - 1,
            int(np.log10(conc_max)) + 2, num_pts)
        predicted = dr.dose_response_model(x_range, hill,
                                           dr.pic50_to_ic50(pic50))

        #fig = plt.figure(figsize=(5,4))
        #ax = fig.add_subplot(111)
        axes[model].grid()
        axes[model].set_xscale('log')
        axes[model].set_ylim(0, 100)
        axes[model].set_ylabel(r"% {} block".format(channel), fontsize=fsize)
        axes[model].set_xlabel(r"{} concentration ($\mu$M)".format(drug),
                               fontsize=fsize)
        axes[model].plot(x_range,
                         predicted,
                         color='blue',
                         lw=2,
                         label="Best fit")
        axes[model].plot(concs,
                         responses,
                         'o',
                         color='orange',
                         ms=10,
                         label="Expt data")
        axes[model].legend(loc=2)
        axes[model].set_title("$M_{}, pIC50 = {}, Hill = {}, SS = {}$".format(
            model, round(pic50, 2), round(hill, 2), round(ss, 2)),
                              fontsize=fsize)
    #axes[2].set_yticklabels([])
    fig.tight_layout()
    #fig.savefig(figs_dir+"{}_{}_model_{}_best_fit.png".format(drug,channel,model))
    fig.savefig(all_figs_dir + "{}_{}_best_fits.png".format(drug, channel))
    fig.savefig(figs_dir + "{}_{}_best_fit.pdf".format(drug, channel))
    plt.close()
示例#5
0
#drug = 'Amiodarone'
#channel = 'hERG'

num_expts, experiment_numbers, experiments = dr.load_crumb_data(drug, channel)

concs = np.array([])
responses = np.array([])
for i in xrange(num_expts):
    concs = np.concatenate((concs, experiments[i][:, 0]))
    responses = np.concatenate((responses, experiments[i][:, 1]))

pi_bit = dr.compute_pi_bit_of_log_likelihood(responses)
num_pts = len(responses)
for m in xrange(1, num_models + 1):
    dr.define_model(m)
    chain_dir = dr.chains_dir(m, drug, channel)
    chains = np.array(glob(chain_dir + "*_chain.txt"))
    temps = np.array([float(c.split("_")[-2]) for c in chains])
    ordered_indices = np.argsort(temps)
    temps = temps[ordered_indices]
    chains = chains[ordered_indices]

    temps = temps[::2]
    chains = chains[::2]

    num_temps = len(temps)
    log_p_ys = np.zeros(num_temps)
    for i in xrange(num_temps):
        print i + 1, "/", num_temps
        chain = np.loadtxt(chains[i], usecols=range(dr.num_params))
示例#6
0
    responses = np.concatenate((responses, experiments[i][:, 1]))

num_pts = len(responses)
pi_bit = dr.compute_pi_bit_of_log_likelihood(responses)

#model = 2  #int(sys.argv[1])

n = 40
c = 3
temperatures = (np.arange(n+1.)/n)**c

num_models = 2

model = int(sys.argv[1])

dr.define_model(model)

#prior_x = np.linspace(0,2,1001)
#prior_pdf = st.logistic.pdf(prior_x, loc=dr.mu, scale=dr.s)
#prior_pdf = st.fisk.pdf(prior_x, c=dr.beta, scale=dr.alpha, loc=0)

for temperature in temperatures:
    chain_file = dr.define_chain_file(model, drug, channel, temperature)
    chain = do_mcmc(temperature)
    np.savetxt(chain_file, chain)

"""fig = plt.figure()
ax = fig.add_subplot(111)
ax.hist(chain[:,1],color='blue',edgecolor='blue',normed=True,bins=40,label="t = {}".format(temperature))
ax.plot(prior_x,prior_pdf,color='red',label='Prior',lw=2)
ax.legend()
#drug = 'Amiodarone'
#channel = 'hERG'

num_expts, experiment_numbers, experiments = dr.load_crumb_data(drug, channel)

concs = np.array([])
responses = np.array([])
for i in xrange(num_expts):
    concs = np.concatenate((concs, experiments[i][:, 0]))
    responses = np.concatenate((responses, experiments[i][:, 1]))

pi_bit = dr.compute_pi_bit_of_log_likelihood(responses)
num_pts = len(responses)
for m in xrange(1, num_models+1):
    dr.define_model(m)
    chain_dir = dr.chains_dir(m, drug, channel)
    chains = np.array(glob(chain_dir+"*_chain.txt"))
    temps = np.array([float(c.split("_")[-2]) for c in chains])
    ordered_indices = np.argsort(temps)
    temps = temps[ordered_indices]
    chains = chains[ordered_indices]

    temps = temps[::2]
    chains = chains[::2]

    num_temps = len(temps)
    log_p_ys = np.zeros(num_temps)
    for i in xrange(num_temps):
        print i+1, "/", num_temps
        chain = np.loadtxt(chains[i], usecols=range(dr.num_params))
示例#8
0
import doseresponse as dr
import matplotlib.pyplot as plt
import os

model = 2
dr.define_model(model)
fsize = 14
priors_fig_dir = '../output/priors/'
if not os.path.exists(priors_fig_dir):
    os.makedirs(priors_fig_dir)

for i in xrange(dr.num_params):
    fig = plt.figure(figsize=(5, 4))
    ax = fig.add_subplot(111)
    ax.plot(dr.prior_xs[i], dr.prior_pdfs[i], lw=2)
    xlower, xupper = dr.prior_xs[i][[0, -1]]
    ax.set_xlim(xlower, xupper)
    ax.grid()
    if i == 0:
        ax.set_xticks(range(int(xlower), int(xupper) + 1, 3))
    ax.set_ylabel('Prior pdf', size=fsize)
    ax.set_xlabel(dr.labels[i], size=fsize)
    fig.tight_layout()
    fig.savefig(priors_fig_dir + '{}_prior.pdf'.format(dr.labels[i]))
    plt.close()
def plot_mcmc_samples(drug_channel):
    drug, channel = drug_channel

    fig = plt.figure(figsize=(5, 8))
    axes = {}
    axes[1] = fig.add_subplot(211)
    axes[2] = fig.add_subplot(212)

    #drug = "Amiodarone"
    #channel = "hERG"
    # drug = "Lopinavir"
    # channel = "Kir2.1"

    num_models = 2
    for model in xrange(1, num_models+1):

        dr.define_model(model)

        chain_file = dr.define_chain_file(model, drug, channel, temperature)

        num_expts, experiment_numbers, experiments = dr.load_crumb_data(drug, channel)
        figs_dir = dr.drug_channel_figs_dir(drug, channel)

        concs = np.array([])
        responses = np.array([])
        for i in xrange(num_expts):
            concs = np.concatenate((concs, experiments[i][:, 0]))
            responses = np.concatenate((responses, experiments[i][:, 1]))

        how_many_samples_to_plot = 1200

        mcmc_samples = np.loadtxt(chain_file, usecols=range(dr.num_params))
        saved_its = mcmc_samples.shape[0]
        sample_indices = npr.randint(0, saved_its, how_many_samples_to_plot)

        mcmc_samples = mcmc_samples[sample_indices]

        conc_min = np.min(concs)
        conc_max = np.max(concs)

        fsize = 14

        num_pts = 101
        x_range = np.logspace(int(np.log10(conc_min))-1, int(np.log10(conc_max))+2, num_pts)


        axes[model].set_xscale('log')
        axes[model].grid()
        axes[model].set_ylabel(r"% {} block".format(channel), fontsize=fsize)
        axes[model].set_xlabel(r"{} concentration ($\mu$M)".format(drug), fontsize=fsize)
        axes[model].set_ylim(0,100)

        for i in xrange(how_many_samples_to_plot):
            if model == 1:
                pic50 = mcmc_samples[i,0]
                hill = 1
                title = "$M_1$, fixed $Hill=1$, varying $pIC50$"
            elif model == 2:
                pic50, hill = mcmc_samples[i,:2]
                title = "$M_2$, varying $pIC50$ and $Hill$"
            axes[model].plot(x_range, dr.dose_response_model(x_range, hill, dr.pic50_to_ic50(pic50)),color='black',alpha=0.01)
        axes[model].plot(concs, responses, 'o', color='orange', ms=10, label="Expt data")
        axes[model].set_title(title, fontsize = fsize)
        axes[model].legend(loc=2)
    #axes[2].set_yticklabels([])
    fig.tight_layout()
    fig.savefig(all_figs_dir+'{}_{}_mcmc_samples.png'.format(drug, channel))
    fig.savefig(figs_dir+'{}_{}_mcmc_samples.pdf'.format(drug,channel,model))
    plt.close()
    return None
def plot_mcmc_samples(drug_channel):
    drug, channel = drug_channel

    fig = plt.figure(figsize=(5, 8))
    axes = {}
    axes[1] = fig.add_subplot(211)
    axes[2] = fig.add_subplot(212)

    #drug = "Amiodarone"
    #channel = "hERG"
    # drug = "Lopinavir"
    # channel = "Kir2.1"

    num_models = 2
    for model in xrange(1, num_models + 1):

        dr.define_model(model)

        chain_file = dr.define_chain_file(model, drug, channel, temperature)

        num_expts, experiment_numbers, experiments = dr.load_crumb_data(
            drug, channel)
        figs_dir = dr.drug_channel_figs_dir(drug, channel)

        concs = np.array([])
        responses = np.array([])
        for i in xrange(num_expts):
            concs = np.concatenate((concs, experiments[i][:, 0]))
            responses = np.concatenate((responses, experiments[i][:, 1]))

        how_many_samples_to_plot = 1200

        mcmc_samples = np.loadtxt(chain_file, usecols=range(dr.num_params))
        saved_its = mcmc_samples.shape[0]
        sample_indices = npr.randint(0, saved_its, how_many_samples_to_plot)

        mcmc_samples = mcmc_samples[sample_indices]

        conc_min = np.min(concs)
        conc_max = np.max(concs)

        fsize = 14

        num_pts = 101
        x_range = np.logspace(
            int(np.log10(conc_min)) - 1,
            int(np.log10(conc_max)) + 2, num_pts)

        axes[model].set_xscale('log')
        axes[model].grid()
        axes[model].set_ylabel(r"% {} block".format(channel), fontsize=fsize)
        axes[model].set_xlabel(r"{} concentration ($\mu$M)".format(drug),
                               fontsize=fsize)
        axes[model].set_ylim(0, 100)

        for i in xrange(how_many_samples_to_plot):
            if model == 1:
                pic50 = mcmc_samples[i, 0]
                hill = 1
                title = "$M_1$, fixed $Hill=1$, varying $pIC50$"
            elif model == 2:
                pic50, hill = mcmc_samples[i, :2]
                title = "$M_2$, varying $pIC50$ and $Hill$"
            axes[model].plot(x_range,
                             dr.dose_response_model(x_range, hill,
                                                    dr.pic50_to_ic50(pic50)),
                             color='black',
                             alpha=0.01)
        axes[model].plot(concs,
                         responses,
                         'o',
                         color='orange',
                         ms=10,
                         label="Expt data")
        axes[model].set_title(title, fontsize=fsize)
        axes[model].legend(loc=2)
    #axes[2].set_yticklabels([])
    fig.tight_layout()
    fig.savefig(all_figs_dir + '{}_{}_mcmc_samples.png'.format(drug, channel))
    fig.savefig(figs_dir +
                '{}_{}_mcmc_samples.pdf'.format(drug, channel, model))
    plt.close()
    return None