示例#1
0
文件: simulation.py 项目: Sir2B/Uni
    def __init__(self, caption="Simulation"):
        """Initialisiert das Fenster."""

        # Fenster öffnen
        try:
            config = Config(sample_buffers=1, samples=1, double_buffer=True)
            super(PendulumWindow, self).__init__(config=config,
                                                 resizable=True,
                                                 caption=caption)
        except:
            super(PendulumWindow, self).__init__(resizable=True,
                                                 caption=caption)

        # Schrift laden
        self.font_sans = font.load(None, 16)

        # FPS
        self.fps_display = clock.ClockDisplay()

        # Pendel aufhängen
        self.single_pendulum = SinglePendulum(length=9.0, phi=pi / 5)
        self.double_pendulum = DoublePendulum()

        # Einstellungsfenster
        self.settings_window = SettingsWindow(self,
                                              pendulum=self.double_pendulum,
                                              position=(15, 15))
        self.settings_window.reset()
def test_radius2():
    a = DoublePendulum()
    a.solve((0, 0.1, 3, 0.5), 10, 101)
    r2 = a.x2**2 + a.y2**2
    assert np.isclose(1**2, np.all(r2))
示例#3
0
def test_stationary():
    """Test if stationary initial state result in stationary behavior."""
    var = DoublePendulum(2, 2, 2, 2)
    y0 = [0, 0, 0, 0]
    y = var(0, y0)
    nt.assert_equal(y, (0.0, 0.0, 0.0, 0.0))

import torch
import numpy as np

from feedback_linearization import FeedbackLinearization
from double_pendulum import DoublePendulum

dyn = DoublePendulum(1.0, 1.0, 1.0, 1.0, time_step=0.01)
fb = FeedbackLinearization(dyn, 3, 5, torch.nn.ReLU(), 0.1)

u = np.array([1.0, 1.0])
x = np.array([1.0, 1.0, 1.0, 1.0])
v = np.array([1.0, 1.0])

#M1 = fb._M1(x)
#print("m1: ", M1)

#M2 = fb._M2(x)
#print("m2: ", M2)

#w1 = fb._w1(x)
#print("w1: ", w1)

#w2 = fb._w2(x)
#print("w2: ", w2)

#mu = fb.feedback(x, v)
#nu = fb.noisy_feedback(x, v)
#print("mean u = ", mu)
#print("noisy u = ", nu)
示例#5
0
文件: simulation.py 项目: Sir2B/Uni
class PendulumWindow(window.Window):

    def __init__(self, caption="Simulation"):
        """Initialisiert das Fenster."""

        # Fenster öffnen
        try:
            config = Config(sample_buffers=1, samples=1, double_buffer=True)
            super(PendulumWindow, self).__init__(config=config,
                                                 resizable=True,
                                                 caption=caption)
        except:
            super(PendulumWindow, self).__init__(resizable=True,
                                                 caption=caption)

        # Schrift laden
        self.font_sans = font.load(None, 16)

        # FPS
        self.fps_display = clock.ClockDisplay()

        # Pendel aufhängen
        self.single_pendulum = SinglePendulum(length=9.0, phi=pi / 5)
        self.double_pendulum = DoublePendulum()

        # Einstellungsfenster
        self.settings_window = SettingsWindow(self,
                                              pendulum=self.double_pendulum,
                                              position=(15, 15))
        self.settings_window.reset()

    def on_resize(self, width, height):
        """Auf Veränderung der Fenstergröße reagieren."""

        glViewport(0, 0, width, height)
        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        glOrtho(0, width, 0, height, -1, 1)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()

    def run(self):
        """Mainloop. Arbeitet Ereignisse ab."""

        while not self.has_exit:
            self.dispatch_events()
            self.update()
            self.draw()
            self.settings_window.draw()
            self.flip()

    def update(self):
        """Aktualisiert den Versuchsaufbau."""

        dt = clock.tick()
        self.single_pendulum.update(dt)
        # nur aktualisieren, wenn Simulation läuft
        if not self.settings_window.stopped:
            self.double_pendulum.update(dt)

    def draw(self):
        """Zeichnet das Fenster."""

        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
        glLoadIdentity()

        glPushMatrix()
        # oben und unten vertauschen (pyglet geht von linker unterer
        # Ecke als Nullpunkt aus)
        glTranslatef(0, self.height, 0)
        glScalef(1, -1, 1)

        # Koordinatensystem skalieren
        scale = 0.2 * self.height / 2 - 30

        # Einfachpendel links
        glPushMatrix()
        glTranslatef(0.25 * self.width, self.height / 2, 0)
        glScalef(scale, scale, scale)
        self.single_pendulum.draw()
        glPopMatrix()

        # Doppelpendel rechts
        glPushMatrix()
        glTranslatef(0.75 * self.width, self.height / 2, 0)
        glScalef(scale, scale, scale)
        self.double_pendulum.draw()
        glPopMatrix()

        glPopMatrix()

        # Text darstellen
        t = font.Text(self.font_sans,
                      text="E = %.2f J" % self.double_pendulum.energy,
                      x=self.width - 10, y=10, halign=font.Text.RIGHT)
        t.draw()
        self.fps_display.draw()
示例#6
0
class Simulation:
    def __init__(self, res, fps, time, dt, scale, speed, path_depth, ag, mass,
                 length, theta, d_theta):
        self.running = False  # Simulation not started yet at this point

        # Setting simulation variables
        self.width, self.height = res
        self.fps = fps
        self.time, self.dt = time, dt
        self.points_count = self.time / self.dt
        self.scale = scale
        self.speed = speed
        self.path_depth = path_depth
        self.path = []

        # Setting variables for solve method.
        self.time_range = np.arange(0, self.time + self.dt,
                                    self.dt)  # Range of time points
        self.ag = ag  # Gravitational acceleration

        # Creating display and pendulum objects; Solving equations
        self.pendulum = DoublePendulum(mass, length, theta, d_theta)
        self.pendulum.solve(self.time_range, self.ag)
        self.display = Display(res)

    def run(self):
        """ Simulation loop. """

        # Start the simulation
        self.running = True

        i = 0  # Iterable for simulation frames
        di = int((1 / self.fps / self.dt) *
                 self.speed)  # Step size based on time density and frame rate

        # Loop
        while self.running:
            # Getting start point and all of the pendulum positions
            x_start, y_start = (int(self.width / 2), int(self.height / 3))
            x_1_scaled, y_1_scaled, x_2_scaled, y_2_scaled = self.pendulum.get_scaled_positions(
                i, self.scale)
            start_pos = (x_start, y_start)
            x_1_pos = (x_start + x_1_scaled, y_start - y_1_scaled)
            x_2_pos = (x_start + x_2_scaled, y_start - y_2_scaled)

            # Getting raw positions and velocities to show live info
            x_1_raw, y_1_raw, x_2_raw, y_2_raw = self.pendulum.get_positions(i)
            angle_1, angle_2 = self.pendulum.get_angles(i)
            velocity_1, velocity_2 = self.pendulum.get_angular_velocities(i)

            # Setting strings ready to be drawn on display
            info_str = 'Mass {} X: {:05.2f}m, Y: {:05.2f}m, Angle: {:05.1f}deg, Velocity: {:06.1f}deg/s'
            m_1_info_str = info_str.format(1, x_1_raw, y_1_raw, angle_1 % 360,
                                           velocity_1)
            m_2_info_str = info_str.format(2, x_2_raw, y_2_raw, angle_2 % 360,
                                           velocity_2)

            # Drawing rods
            self.display.draw_rod(start_pos, x_1_pos)
            self.display.draw_rod(x_1_pos, x_2_pos)

            self.display.draw_path(self.path, self.path_depth)  # Drawing path

            # Drawing bodies
            self.display.draw_body(x_1_pos)
            self.display.draw_body(x_2_pos)

            # Drawing live info
            self.display.draw_info(m_1_info_str, (10, 10))
            self.display.draw_info(m_2_info_str, (10, 38))

            # Handling events and transition into next iteration
            self.display.next_frame(int(1000 / self.fps))
            self.display.handle_events()

            # Inserting current second pendulum position into path
            self.path.append(x_2_pos)

            # Iterating and stopping the simulation at the end of solved time range
            i += di
            if i > self.points_count:
                self.running = False
        xlim=(
            -longest_double_pendulum.max_length, 
            longest_double_pendulum.max_length
        ), 
        ylim=(
            -longest_double_pendulum.max_length, 
            longest_double_pendulum.max_length
        ),
    )
    ax.set_aspect('equal')
    ax.grid()
    return ax

if __name__ == "__main__":  

    # Create the pendula
    fig = plt.figure()
    pendula = DoublePendulum.create_multiple_double_pendula(num_pendula=10) 
    axes = create_axes(fig=fig, pendula=pendula)
    pendula_axes = list(zip(pendula, axes))

    ani = animation.FuncAnimation(
        fig, 
        animate, 
        np.arange(1, len(pendula[0].y)),
        interval=25, 
        blit=True, 
    )
    plt.show()

示例#8
0
nominal=1
truedyn=1
T=500
to_render=1
check_energy=0
speed=0.001
path=0

# Create a double pendulum. And a bad one
mass1 = 1.0
mass2 = 1.0
length1 = 1.0
length2 = 1.0
time_step = 0.01
friction_coeff=0.5
dyn = DoublePendulum(mass1, mass2, length1, length2, time_step, friction_coeff)
bad_dyn = DoublePendulum(0.33*mass1, 0.33*mass2, 0.33*length1, 0.33*length2, time_step,friction_coeff)


# LQR Parameters and dynamics
q=200.0
r=1.0
A,B=get_Linear_System()
Q=q*np.diag([1,0,1.0,0])
R=r*np.eye(2)

#Get Linear Feedback policies
K=solve_lqr(A,B,Q,R)

#Get random initial state
def test_theta2():
	pen = DoublePendulum()
	pen.theta2
def test_t():
	pen = DoublePendulum()
	pen.t
class DoublePendulumEnv(gym.Env):
    def __init__(self, stepsPerRollout, rewardScaling, dynamicsScaling,
                 preprocessState, uscaling, largerQ):
        #calling init method of parent class
        super(DoublePendulumEnv, self).__init__()

        #setting local parameters
        self._preprocess_state = preprocessState
        self._num_steps_per_rollout = stepsPerRollout
        self._reward_scaling = rewardScaling
        self._norm = 2
        self._time_step = 0.01
        self._uscaling = uscaling
        self._largerQ = largerQ

        #setting action space dimensions so agent knows output size
        self.action_space = spaces.Box(low=-50,
                                       high=50,
                                       shape=(6, ),
                                       dtype=np.float32)

        #setting observation space dimensions so agent knows input size
        if (self._preprocess_state):
            self.observation_space = spaces.Box(low=-100,
                                                high=100,
                                                shape=(6, ),
                                                dtype=np.float32)
        else:
            self.observation_space = spaces.Box(low=-100,
                                                high=100,
                                                shape=(4, ),
                                                dtype=np.float32)

        # TODO: these should match what we get from system identification, once
        # we have reliable numbers there.
        #setting parameters of quadrotor and creating dynamics object

        mass1 = 1.0
        mass2 = 1.0
        length1 = 1.0
        length2 = 1.0
        self._dynamics = DoublePendulum(mass1, mass2, length1, length2,
                                        self._time_step)

        #creating bad dynamics object
        scaling = 0.000001 + dynamicsScaling
        self._bad_dynamics = DoublePendulum(scaling * mass1, scaling * mass2,
                                            scaling * length1,
                                            scaling * length2, self._time_step)

        #setting other local variables
        self.A, self.B, C = self._dynamics.linearized_system()
        self._count = 0
        self._xdim = self._dynamics.xdim
        self._udim = self._dynamics.udim
        self._M1, self._f1 = self._bad_dynamics.feedback_linearize()
        self._iter_count = 0

    def step(self, u):
        #compute v based on basic control law
        diff = self._dynamics.linear_system_state_delta(
            self._reference[self._count], self._current_y)

        v = -self._K @ (diff)

        #output of neural network
        m2, f2 = np.split(self._uscaling * u, [4])

        M = self._bad_dynamics._M_q(self._state) + np.reshape(
            m2, (self._udim, self._udim))

        f = self._bad_dynamics._f_q(self._state) + np.reshape(
            f2, (self._udim, 1))

        z = np.dot(M, v) + f

        self._state = self._dynamics.integrate(self._state, z, self._time_step)
        self._current_y = self._dynamics.linearized_system_state(self._state)

        reward = self.computeReward(self._y_desired[self._count],
                                    self._current_y)

        #Increasing count
        self._count += 1

        #computing observations, rewards, done, info???
        done = False
        if (self._count >= self._num_steps_per_rollout):
            done = True

        #formatting observation
        list = []
        for x in self._state:
            list.append(x[0])
        observation = list

        #preprocessing observation
        if (self._preprocess_state):
            observation = self.preprocess_state(observation)

        #returning stuff
        return np.array(observation), reward, done, {}

    def reset(self):
        #(0) Sample state using state smapler method
        self._state = self.initial_state_sampler()

        # (1) Generate a time series for v and corresponding y.
        self._reference, self._K = self._generate_reference(self._state)
        self._y_desired = self._generate_ys(self._state, self._reference,
                                            self._K)
        self._current_y = self._dynamics.linearized_system_state(self._state)

        #reset internal count
        self._count = 0

        #formatting observation
        list = []
        for x in self._state:
            list.append(x[0])
        observation = list

        #preprocessing state
        if (self._preprocess_state):
            observation = self.preprocess_state(observation)

        return np.array(observation)

    def seed(self, s):
        np.random.seed(np.random.randomint())

    def render(self):
        # TODO!
        pass

    def initial_state_sampler(self):
        lower = np.array([[-np.pi], [-0.5], [-np.pi], [-0.5]])
        upper = -lower
        return np.random.uniform(lower, upper)

    def _generate_reference(self, x0):
        """
        Use sinusoid with random frequency, amplitude, and bias:
              ``` vi(k) = a * sin(2 * pi * f * k) + b  ```
        """
        MAX_CONTINUOUS_TIME_FREQ = 0.1
        MAX_DISCRETE_TIME_FREQ = MAX_CONTINUOUS_TIME_FREQ * self._dynamics._time_step

        linsys_xdim = self.A.shape[0]
        linsys_udim = self.B.shape[1]

        #random scaling factor for Q based on how many iterations have been done
        if (self._largerQ):
            Q = 50 * (np.random.uniform() + 0.1) * np.eye(linsys_xdim)
        else:
            Q = 10 * np.eye(linsys_xdim)

        #fixed Q scaling
        # Q = 1.0 * np.diag([1.0, 0.0, 0.0, 0.0,
        #                     1.0, 0.0, 0.0, 0.0,
        #                     1.0, 0.0, 0.0, 0.0,
        #                     1.0, 0.0])
        #fixed R scaling
        R = 1.0 * np.eye(linsys_udim)

        # Initial y.
        y0 = self._dynamics.linearized_system_state(x0)

        y = np.empty((linsys_xdim, self._num_steps_per_rollout))
        for ii in range(linsys_xdim):
            y[ii, :] = np.linspace(
                0, self._num_steps_per_rollout * self._dynamics._time_step,
                self._num_steps_per_rollout)
            y[ii, :] = y0[ii, 0] + 1.0 * np.random.uniform() * (1.0 - np.cos(
                2.0 * np.pi * MAX_DISCRETE_TIME_FREQ * \
                np.random.uniform() * y[ii, :])) #+ 0.1 * np.random.normal()

        # Ensure that y ref starts at y0.
        assert (np.allclose(y[:, 0].flatten(), y0.flatten(), 1e-5))

        P = solve_continuous_are(self.A, self.B, Q, R)
        K = np.linalg.inv(R) @ self.B.T @ P
        return (np.split(y,
                         indices_or_sections=self._num_steps_per_rollout,
                         axis=1), K)

    def _generate_ys(self, x0, refs, K):
        """
        Compute desired output sequence given initial state and input sequence.
        This is computed by applying the true dynamics' feedback linearization.
        """
        x = x0.copy()
        y = self._dynamics.linearized_system_state(x)
        ys = []
        for r in refs:
            diff = self._dynamics.linear_system_state_delta(r, y)
            v = -K @ diff
            u = self._dynamics.feedback(x, v)
            x = self._dynamics.integrate(x, u)
            y = self._dynamics.linearized_system_state(x)
            ys.append(y.copy())
        return ys

    def computeReward(self, y_desired, y):
        return -self._reward_scaling * self._dynamics.observation_distance(
            y_desired, y, self._norm)

    def close(self):
        pass

    def preprocess_state(self, x):
        return self._dynamics.preprocess_state(x)
示例#12
0
import torch
import numpy as np

from double_pendulum import DoublePendulum

dyn = DoublePendulum(1.0, 1.0, 1.0, 1.0, time_step=0.01)

u = np.array([[0.0], [0.0]])
x = np.array([[0.1], [0.0], [0.1], [0.0]])

current_x = x.copy()
for ii in range(10):
    current_x = dyn.integrate(current_x, u)
    print(current_x.T)