示例#1
0
    # read config
    if args.resumed:
        # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        continue_state_object = torch.load(args.resumed,
                                           map_location=torch.device("cpu"))
        config = continue_state_object['config']
        solver.init_from_checkpoint(
            continue_state_object=continue_state_object)
        if is_main_process:
            snap_dir = args.resumed[:-len(args.resumed.split('/')[-1])]
            if not os.path.exists(snap_dir):
                logging.error('[Error] {} is not existed.'.format(snap_dir))
                raise FileNotFoundError
    else:
        config = load_config(args.config)
        pathcfg = load_config(args.pathcfg)
        config = merge_config(config, pathcfg)

        solver.init_from_scratch(config)
        if is_main_process:
            exp_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime())
            if isinstance(config['data']['name'], list):
                snap_dir = os.path.join(config["snap"]["path"],
                                        config['data']['name'][0],
                                        config['model']['name'], exp_time)
            else:
                snap_dir = os.path.join(config["snap"]["path"],
                                        config['data']['name'],
                                        config['model']['name'], exp_time)
            if not os.path.exists(snap_dir):
示例#2
0
    logging.error(
        'args --config and --resumed should at least one value available.')
    raise ValueError
is_main_process = True if args.local_rank == 0 else False

solver = Solver()

# read config
if args.resumed:
    # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    continue_state_object = torch.load(args.resumed,
                                       map_location=torch.device("cpu"))
    config = continue_state_object['config']
    ### Minghan: only use this line when the trained model and the evaluation is not on the same machine
    if args.config:
        override_cfg = load_config(args.config)
        config.update(override_cfg)

    solver.init_from_checkpoint(continue_state_object=continue_state_object)
    if is_main_process:
        snap_dir = args.resumed[:-len(args.resumed.split('/')[-1])]
        if not os.path.exists(snap_dir):
            logging.error('[Error] {} is not existed.'.format(snap_dir))
            raise FileNotFoundError
else:
    config = load_config(args.config)
    pathcfg = load_config(args.pathcfg)
    config = merge_config(config, pathcfg)

    solver.init_from_scratch(config)
    if is_main_process:
示例#3
0
solver = Solver()

# read config
if args.resumed:
    # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    continue_state_object = torch.load(args.resumed,
                                       map_location=torch.device("cpu"))
    config = continue_state_object['config']
    solver.init_from_checkpoint(continue_state_object=continue_state_object)
    if is_main_process:
        snap_dir = args.resumed[:-len(args.resumed.split('/')[-1])]
        if not os.path.exists(snap_dir):
            logging.error('[Error] {} is not existed.'.format(snap_dir))
            raise FileNotFoundError
else:
    config = load_config(args.config)
    solver.init_from_scratch(config)
    if is_main_process:
        exp_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime())
        snap_dir = os.path.join(config["snap"]["path"], config['data']['name'],
                                config['model']['name'], exp_time)
        if not os.path.exists(snap_dir):
            os.makedirs(snap_dir)

if is_main_process:
    print_config(config)

# dataset
tr_loader, sampler, niter_per_epoch = build_loader(config,
                                                   True,
                                                   solver.world_size,