示例#1
0
def find_spinal_cord(y):
    y_spine = get_mask_full_spine(y)
    # зальем "по y"
    y_ = apply_along_axes(fill_line, y_spine, axes=(1, 2)).astype(bool)
    # возьмем неплотное внутри
    y_n = (y < 100) & y_
    # свернем с цилиндром 5 default
    mask = np.stack([disk(5) for i in range(20)])
    y__ = convolve(y_n.astype(int), mask) / mask.sum()
    y_f = get_greatest_component(y__ > 0.85)

    return y_f
示例#2
0
def limits_to_mask(limits, threshold=.3, width_ratio=.7):
    mask = limits >= threshold
    mask = get_greatest_component(mask)

    # take convex hull line by line in order to fill "holes" inside the brain
    limits_mask = apply_along_axes(
        lambda s: convex_hull_image(s[None])[0] if s.any() else s, mask, -1)

    widths = mask.sum(0)
    # drop the lines that are too thin - these are just outliers
    start, stop = mask2bounding_box(
        widths >= width_ratio * widths.max()).flatten()
    limits_mask[:, :start] = 0

    return limits_mask.astype(bool)
示例#3
0
    def test_apply(self):
        x = np.random.rand(3, 10, 10) * 2 + 3
        np.testing.assert_array_almost_equal(
            apply_along_axes(normalize, x, axes=(1, 2), percentiles=20),
            normalize(x, percentiles=20, axes=0)
        )

        axes = (0, 2)
        y = apply_along_axes(min_max_scale, x, axes)
        np.testing.assert_array_almost_equal(y.max(axes), 1)
        np.testing.assert_array_almost_equal(y.min(axes), 0)

        np.testing.assert_array_almost_equal(apply_along_axes(identity, x, 1), x)
        np.testing.assert_array_almost_equal(apply_along_axes(identity, x, -1), x)
        np.testing.assert_array_almost_equal(apply_along_axes(identity, x, (0, 1)), x)
        np.testing.assert_array_almost_equal(apply_along_axes(identity, x, (0, 2)), x)
示例#4
0
def remove_background(x):
    # otsu -> greatest connected component -> convex hull
    mask = get_greatest_component(x > threshold_otsu(x))
    mask = apply_along_axes(lambda s: convex_hull_image(s)
                            if s.any() else s, mask, (0, 1))
    return x * mask