示例#1
0
    def test_sample_2D(self):

        N, d = 20, 2
        jacobi_params = - 0.5 * np.ones((d, 2))

        dpp = MultivariateJacobiOPE(N, jacobi_params)

        sampl = dpp.sample(random_state=self.seed)  # seed = 0

        expected_sample = np.array([[-0.44929357, -0.92988338],
                                    [0.07128896, -0.98828901],
                                    [-0.43895328, -0.64850438],
                                    [-0.56491996, 0.43632636],
                                    [0.33859341, 0.6642957],
                                    [-0.89437538, -0.98384996],
                                    [0.93451148, -0.42788073],
                                    [-0.81846092, 0.57000777],
                                    [-0.42084694, 0.98065145],
                                    [0.97651548, 0.94243444],
                                    [0.11753084, 0.96240585],
                                    [-0.12183308, -0.14093164],
                                    [-0.9940169, 0.16811198],
                                    [-0.76730512, -0.05402772],
                                    [0.99984566, -0.95942833],
                                    [0.99996511, -0.01959666],
                                    [0.05053165, -0.40778628],
                                    [0.82158181, 0.58501064],
                                    [-0.97396649, 0.90805501],
                                    [-0.99808676, -0.49690354]])

        self.assertTrue(np.allclose(sampl, expected_sample))
示例#2
0
    def test_sample_2D(self):

        N, d = 20, 2
        jacobi_params = -0.5 * np.ones((d, 2))

        dpp = MultivariateJacobiOPE(N, jacobi_params)

        sampl = dpp.sample(random_state=self.seed)
        # seed = 0
        expected_sample = np.array([[-0.44929357, -0.92988338],
                                    [-0.38287518, 0.20141371],
                                    [-0.82081218, 0.71370281],
                                    [0.54434591, -0.40548681],
                                    [0.83560033, 0.99975326],
                                    [0.58479869, -0.97294791],
                                    [-0.97140965, -0.9958691],
                                    [0.73176809, 0.0462124],
                                    [0.99999994, 0.62478638],
                                    [-0.995107, 0.6146506],
                                    [0.99956026, -0.54696107],
                                    [-0.73400973, 0.99976412],
                                    [-0.9940169, 0.16811198],
                                    [0.26219327, 0.71667124],
                                    [-0.76730512, -0.05402772],
                                    [0.99910531, 0.90729924],
                                    [0.99984566, -0.95942833],
                                    [0.99996511, -0.01959666],
                                    [0.05053165, -0.40778628],
                                    [0.11004152, 0.99337928]])

        self.assertTrue(np.allclose(sampl, expected_sample))
示例#3
0
    def test_sample_1D(self):

        N, d = 20, 1
        jacobi_params = - 0.5 * np.ones((d, 2))

        dpp = MultivariateJacobiOPE(N, jacobi_params)
        sampl = dpp.sample(random_state=self.seed)  # seed = 0
        expected_sample = np.array([[0.9995946],
                                    [0.98944808],
                                    [0.97485733],
                                    [0.86576265],
                                    [0.7958162],
                                    [0.64406931],
                                    [0.53459294],
                                    [0.4259159],
                                    [0.1784497],
                                    [0.12319757],
                                    [-0.13340743],
                                    [-0.28758726],
                                    [-0.40275405],
                                    [-0.68282936],
                                    [-0.76523971],
                                    [-0.82355336],
                                    [-0.88258742],
                                    [-0.94587727],
                                    [-0.96426474],
                                    [-0.99658163]])

        self.assertTrue(np.allclose(sampl, expected_sample))
示例#4
0
    def test_kernel_gram_matrix(self):
        """
            K(x) == phi_x.dot(phi_x)
            K(x, y) == phi_x.dot(phi_y)
            K(x, Y) == K(Y, x) = [phi_x.dot(phi_y) for y in Y]
            K(X) == [phi_x.dot(phi_x) for x in X]
            K(X, Y) == [phi_x.dot(phi_y) for x, y in zip(X, Y)]
        """
        N = 100
        dims = np.arange(2, 5)

        for d in dims:

            jacobi_params = 0.5 - np.random.rand(d, 2)
            jacobi_params[0, :] = -0.5

            dpp = MultivariateJacobiOPE(N, jacobi_params)

            x, y = np.random.rand(d), np.random.rand(d)
            phi_x = dpp.eval_poly_multiD(x, normalize='norm')
            phi_y = dpp.eval_poly_multiD(y, normalize='norm')

            X, Y = np.random.rand(5, d), np.random.rand(5, d)
            phi_X = dpp.eval_poly_multiD(X, normalize='norm').T
            phi_Y = dpp.eval_poly_multiD(Y, normalize='norm').T

            self.assertTrue(np.allclose(dpp.K(x), inner1d(phi_x)))

            self.assertTrue(np.allclose(dpp.K(X), inner1d(phi_X)))

            self.assertTrue(np.allclose(dpp.K(x, y), inner1d(phi_x, phi_y)))

            self.assertTrue(np.allclose(dpp.K(x, Y), phi_x.dot(phi_Y)))

            self.assertTrue(np.allclose(dpp.K(X, Y), inner1d(phi_X, phi_Y)))
示例#5
0
    def test_square_norms(self):

        N = 100
        dims = np.arange(2, 5)

        max_deg = 50  # to avoid quad warning in dimension 1
        for d in dims:

            jacobi_params = 0.5 - np.random.rand(d, 2)
            jacobi_params[0, :] = -0.5

            dpp = MultivariateJacobiOPE(N, jacobi_params)
            pol_2_eval = dpp.poly_1D_degrees[:max_deg]

            quad_square_norms =\
                [[quad(lambda x:
                        (1-x)**a * (1+x)**b * eval_jacobi(n, a, b, x)**2,
                        -1, 1)[0]
                        for n, a, b in zip(deg,
                                            dpp.jacobi_params[:, 0],
                                            dpp.jacobi_params[:, 1])]
                 for deg in pol_2_eval]

            self.assertTrue(
                np.allclose(
                    dpp.poly_1D_square_norms[pol_2_eval,
                                             range(dpp.dim)],
                    quad_square_norms))
示例#6
0
    def test_kernel_evaluations(self):
        N = 100
        dims = np.arange(2, 5)

        for d in dims:
            with self.subTest(dimension=d):

                jacobi_params = 0.5 - np.random.rand(d, 2)
                jacobi_params[0, :] = -0.5

                dpp = MultivariateJacobiOPE(N, jacobi_params)

                X = np.random.rand(20, d)
                Y = np.random.rand(20, d)

                K_XX = is_symmetric(dpp.K(X, X))
                K_xx = np.diag(K_XX)
                K_xy = np.ravel([dpp.K(x, y) for x, y in zip(X, Y)])

                checks = ((dpp.K(X), K_XX),
                          (dpp.K(X, X, eval_pointwise=True), K_xx),
                          (dpp.K(X, Y, eval_pointwise=True), K_xy))

                for idx, (a, b) in enumerate(checks):
                    with self.subTest(idx=idx):
                        self.assertTrue(np.allclose(a, b),
                                        'a={}, b={}'.format(a, b))
示例#7
0
    def test_Gautschi_bounds(self):
        """Test if bounds computed w/wo log scale coincide"""

        N = 100
        dims = np.arange(2, 5)

        for d in dims:

            jacobi_params = 0.5 - np.random.rand(d, 2)
            jacobi_params[0, :] = -0.5

            dpp = MultivariateJacobiOPE(N, jacobi_params)

            with_log_scale = compute_Gautschi_bounds(dpp.jacobi_params,
                                                     dpp.ordering,
                                                     log_scale=True)

            without_log_scale = compute_Gautschi_bounds(dpp.jacobi_params,
                                                        dpp.ordering,
                                                        log_scale=False)

            self.assertTrue(np.allclose(with_log_scale, without_log_scale))
示例#8
0
    def test_kernel_symmetry(self):
        """
            K(x) == K(x, x)
            K(x, y) == K(y, x)
            K(x, Y) == K(Y, x) = [K(x, y) for y in Y]
            K(X) == [K(x, x) for x in X]
            K(X, Y) == [K(x, y) for x, y in zip(X, Y)]
        """
        N = 100
        dims = np.arange(2, 5)

        for d in dims:

            jacobi_params = 0.5 - np.random.rand(d, 2)
            jacobi_params[0, :] = -0.5

            dpp = MultivariateJacobiOPE(N, jacobi_params)

            x, y = np.random.rand(d), np.random.rand(d)
            X, Y = np.random.rand(5, d), np.random.rand(5, d)

            self.assertTrue(np.allclose(dpp.K(x), dpp.K(x, x)))

            self.assertTrue(
                np.allclose(np.array([dpp.K(x) for x in X]),
                            np.concatenate([dpp.K(x, x) for x in X])))

            self.assertTrue(np.allclose(dpp.K(X), dpp.K(X, X)))

            self.assertTrue(np.allclose(dpp.K(x, y), dpp.K(y, x)))

            self.assertTrue(
                np.allclose(dpp.K(x, Y),
                            np.concatenate([dpp.K(x, y) for y in Y])))

            self.assertTrue(np.allclose(dpp.K(x, Y), dpp.K(Y, x)))

            self.assertTrue(np.allclose(dpp.K(X, Y), dpp.K(Y, X)))
示例#9
0
import numpy as np
import matplotlib.pyplot as plt
from dppy.multivariate_jacobi_ope import MultivariateJacobiOPE

# The .plot() method outputs smtg only in dimension d=1 or 2

# Number of points / dimension
N, d = 200, 2
# Jacobi parameters in [-0.5, 0.5]^{d x 2}
jac_params = np.array([[0.5, 0.5], [-0.3, 0.4]])

dpp = MultivariateJacobiOPE(N, jac_params)

# Get an exact sample
sampl = dpp.sample()

# Display
# the cloud of points
# the base probability densities
# the marginal empirical histograms
dpp.plot(sample=sampl, weighted=False)
plt.tight_layout()

dpp.plot(sample=sampl, weighted='BH')
plt.tight_layout()

dpp.plot(sample=sampl, weighted='EZ')
plt.tight_layout()