示例#1
0
def get_query_encoder(args):
    saved_state = load_states_from_checkpoint(args.model_file)
    set_encoder_params_from_state(saved_state.encoder_params, args)
    print_args(args)

    tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type,
                                                       args,
                                                       inference_only=True)

    encoder = encoder.question_model

    #encoder, _ = setup_for_distributed_mode(encoder, None, args.device, args.n_gpu,
    #                                        args.local_rank,
    #                                        args.fp16,
    #                                        args.fp16_opt_level)
    #encoder.eval()

    logger.info(args.__dict__)

    # load weights from the model file
    model_to_load = get_model_obj(encoder)
    logger.info('Loading saved model state ...')
    logger.debug('saved model keys =%s', saved_state.model_dict.keys())

    prefix_len = len('question_model.')
    ctx_state = {
        key[prefix_len:]: value
        for (key, value) in saved_state.model_dict.items()
        if key.startswith('question_model.')
    }
    model_to_load.load_state_dict(ctx_state)

    return model_to_load
示例#2
0
    def _load_saved_state(self, saved_state: CheckpointStateOFA):
        epoch = saved_state.epoch
        # offset is currently ignored since all checkpoints are made after full epochs
        offset = saved_state.offset
        if offset == 0:  # epoch has been completed
            epoch += 1
        logger.info("Loading checkpoint @ batch=%s and epoch=%s", offset, epoch)

        if self.cfg.ignore_checkpoint_offset:
            self.start_epoch = 0
            self.start_batch = 0
        else:
            self.start_epoch = epoch
            # TODO: offset doesn't work for multiset currently
            self.start_batch = 0  # offset

        model_to_load = get_model_obj(self.model)
        logger.info("Loading saved model state ...")

        model_to_load.load_state(saved_state)

        if not self.cfg.ignore_checkpoint_optimizer:
            if saved_state.biencoder_optimizer_dict:
                logger.info("Loading saved biencoder optimizer state ...")
                self.biencoder_optimizer.load_state_dict(saved_state.biencoder_optimizer_dict)

            if saved_state.biencoder_scheduler_dict:
                self.biencoder_scheduler_state = saved_state.biencoder_scheduler_dict

            if saved_state.reader_optimizer_dict:
                logger.info("Loading saved reader optimizer state ...")
                self.reader_optimizer.load_state_dict(saved_state.reader_optimizer_dict)

            if saved_state.reader_scheduler_dict:
                self.reader_scheduler_state = saved_state.reader_scheduler_dict
示例#3
0
def main(args):
    saved_state = load_states_from_checkpoint(args.model_file)
    set_encoder_params_from_state(saved_state.encoder_params, args)
    print_args(args)

    tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type,
                                                       args,
                                                       inference_only=True)

    encoder = encoder.ctx_model

    encoder, _ = setup_for_distributed_mode(encoder, None, args.device,
                                            args.n_gpu, args.local_rank,
                                            args.fp16, args.fp16_opt_level)
    encoder.eval()

    # load weights from the model file
    model_to_load = get_model_obj(encoder)
    logger.info('Loading saved model state ...')
    logger.debug('saved model keys =%s', saved_state.model_dict.keys())

    prefix_len = len('ctx_model.')
    ctx_state = {
        key[prefix_len:]: value
        for (key, value) in saved_state.model_dict.items()
        if key.startswith('ctx_model.')
    }
    model_to_load.load_state_dict(ctx_state)

    logger.info('reading data from file=%s', args.ctx_file)

    rows = []
    with open(args.ctx_file) as tsvfile:
        reader = csv.reader(tsvfile, delimiter='\t')
        # file format: doc_id, doc_text, title
        rows.extend([(row[0], row[1], row[2]) for row in reader
                     if row[0] != 'id'])

    shard_size = int(len(rows) / args.num_shards)
    start_idx = args.shard_id * shard_size
    end_idx = start_idx + shard_size

    logger.info(
        'Producing encodings for passages range: %d to %d (out of total %d)',
        start_idx, end_idx, len(rows))
    rows = rows[start_idx:end_idx]

    data = gen_ctx_vectors(rows, encoder, tensorizer, True)

    file = args.out_file + '_' + str(args.shard_id)
    pathlib.Path(os.path.dirname(file)).mkdir(parents=True, exist_ok=True)
    logger.info('Writing results to %s' % file)
    with open(file, mode='wb') as f:
        pickle.dump(data, f)

    logger.info('Total passages processed %d. Written to %s', len(data), file)
示例#4
0
    def __init__(self, name, **config):
        super().__init__(name)

        self.args = argparse.Namespace(**config)
        saved_state = load_states_from_checkpoint(self.args.model_file)
        set_encoder_params_from_state(saved_state.encoder_params, self.args)
        tensorizer, encoder, _ = init_biencoder_components(
            self.args.encoder_model_type, self.args, inference_only=True)
        encoder = encoder.question_model
        encoder, _ = setup_for_distributed_mode(
            encoder,
            None,
            self.args.device,
            self.args.n_gpu,
            self.args.local_rank,
            self.args.fp16,
        )
        encoder.eval()

        # load weights from the model file
        model_to_load = get_model_obj(encoder)

        prefix_len = len("question_model.")
        question_encoder_state = {
            key[prefix_len:]: value
            for (key, value) in saved_state.model_dict.items()
            if key.startswith("question_model.")
        }
        model_to_load.load_state_dict(question_encoder_state)
        vector_size = model_to_load.get_out_size()

        index_buffer_sz = self.args.index_buffer
        if self.args.hnsw_index:
            index = DenseHNSWFlatIndexer(vector_size)
            index.deserialize_from(self.args.hnsw_index_path)
        else:
            index = DenseFlatIndexer(vector_size)

        self.retriever = DenseRetriever(encoder, self.args.batch_size,
                                        tensorizer, index)

        # index all passages
        ctx_files_pattern = self.args.encoded_ctx_file
        input_paths = glob.glob(ctx_files_pattern)

        if not self.args.hnsw_index:
            self.retriever.index_encoded_data(input_paths,
                                              buffer_size=index_buffer_sz)

        # not needed for now
        self.all_passages = load_passages(self.args.ctx_file)

        self.KILT_mapping = None
        if self.args.KILT_mapping:
            self.KILT_mapping = pickle.load(open(self.args.KILT_mapping, "rb"))
示例#5
0
def get_retriever(args):
    saved_state = load_states_from_checkpoint(args.model_file)
    set_encoder_params_from_state(saved_state.encoder_params, args)

    tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type,
                                                       args,
                                                       inference_only=True)

    encoder = encoder.question_model
    encoder, _ = setup_for_distributed_mode(encoder, None, args.device,
                                            args.n_gpu, args.local_rank,
                                            args.fp16)
    encoder.eval()

    # load weights from the model file
    model_to_load = get_model_obj(encoder)
    logger.info('Loading saved model state ...')

    prefix_len = len('question_model.')
    question_encoder_state = {
        key[prefix_len:]: value
        for (key, value) in saved_state.model_dict.items()
        if key.startswith('question_model.')
    }
    model_to_load.load_state_dict(question_encoder_state)
    vector_size = model_to_load.get_out_size()
    logger.info('Encoder vector_size=%d', vector_size)

    index_buffer_sz = args.index_buffer
    if args.hnsw_index:
        index = DenseHNSWFlatIndexer(vector_size)
        index_buffer_sz = -1  # encode all at once
    else:
        index = DenseFlatIndexer(vector_size)

    retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index,
                               args.device)

    # index all passages
    if len(args.encoded_ctx_file) > 0:
        ctx_files_pattern = args.encoded_ctx_file
        input_paths = glob.glob(ctx_files_pattern)

        index_path = "_".join(input_paths[0].split("_")[:-1])
        if args.save_or_load_index and os.path.exists(index_path):
            retriever.index.deserialize(index_path)
        else:
            logger.info('Reading all passages data from files: %s',
                        input_paths)
            retriever.index_encoded_data(input_paths,
                                         buffer_size=index_buffer_sz)
            if args.save_or_load_index:
                retriever.index.serialize(index_path)
        # get questions & answers
    return retriever
示例#6
0
 def load_saved_state_into_model(encoder, prefix="ctx_model."):
     encoder.eval()
     model_to_load = get_model_obj(encoder)
     prefix_len = len(prefix)
     encoder_state = {
         key[prefix_len:]: value
         for (key, value) in saved_state.model_dict.items()
         if key.startswith(prefix)
     }
     model_to_load.load_state_dict(encoder_state)
     return model_to_load
def main(args):
    saved_state = load_states_from_checkpoint(args.model_file)
    set_encoder_params_from_state(saved_state.encoder_params, args)
    print_args(args)

    tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type,
                                                       args,
                                                       inference_only=True)

    encoder = encoder.ctx_model

    encoder, _ = setup_for_distributed_mode(encoder, None, args.device,
                                            args.n_gpu, args.local_rank,
                                            args.fp16, args.fp16_opt_level)
    encoder.eval()

    # load weights from the model file
    model_to_load = get_model_obj(encoder)
    logger.info('Loading saved model state ...')
    logger.debug('saved model keys =%s', saved_state.model_dict.keys())

    prefix_len = len('ctx_model.')
    ctx_state = {
        key[prefix_len:]: value
        for (key, value) in saved_state.model_dict.items()
        if key.startswith('ctx_model.')
    }
    model_to_load.load_state_dict(ctx_state)

    logger.info('reading data from file=%s', args.ctx_file)

    rows = []
    with open(args.ctx_file) as jsonfile:
        blob = json.load(jsonfile)

    for paper in blob.values():
        s2_id = paper["paper_id"]
        title = paper.get("title") or ""
        abstract = paper.get("abstract") or ""
        rows.append((s2_id, abstract, title))

    data = gen_ctx_vectors(rows, encoder, tensorizer, True)

    file = args.out_file
    pathlib.Path(os.path.dirname(file)).mkdir(parents=True, exist_ok=True)
    logger.info('Writing results to %s' % file)
    with open(file, "w+") as f:
        for (s2_id, vec) in data:
            out = {"paper_id": s2_id, "embedding": vec.tolist()}
            f.write(json.dumps(out) + "\n")

    logger.info('Total passages processed %d. Written to %s', len(data), file)
示例#8
0
    def _load_saved_state(self, saved_state: CheckpointState):
        epoch = saved_state.epoch
        offset = saved_state.offset
        if offset == 0:  # epoch has been completed
            epoch += 1
        # logger.info('Loading checkpoint @ batch=%s and epoch=%s', offset, epoch)
        # self.start_epoch = epoch
        # self.start_batch = offset

        model_to_load = get_model_obj(self.reader)
        if saved_state.model_dict:
            logger.info('Loading model weights from saved state ...')
            model_to_load.load_state_dict(saved_state.model_dict)
示例#9
0
    def _save_checkpoint(self, scheduler, epoch: int, offset: int) -> str:
        args = self.args
        model_to_save = get_model_obj(self.reader)
        cp = os.path.join(args.output_dir,
                          args.checkpoint_file_name + '.' + str(epoch) + ('.' + str(offset) if offset > 0 else ''))

        meta_params = get_encoder_params_state(args)

        state = CheckpointState(model_to_save.state_dict(), self.optimizer.state_dict(), scheduler.state_dict(), offset,
                                epoch, meta_params
                                )
        torch.save(state._asdict(), cp)
        return cp
示例#10
0
 def _save_checkpoint(self, scheduler, epoch: int, offset: int) -> str:
     cfg = self.cfg
     model_to_save = get_model_obj(self.biencoder)
     cp = os.path.join(cfg.output_dir, cfg.checkpoint_file_name + "." + str(epoch))
     meta_params = get_encoder_params_state_from_cfg(cfg)
     state = CheckpointState(
         model_to_save.get_state_dict(),
         self.optimizer.state_dict(),
         scheduler.state_dict(),
         offset,
         epoch,
         meta_params,
     )
     torch.save(state._asdict(), cp)
     logger.info("Saved checkpoint at %s", cp)
     return cp
示例#11
0
    def __init__(self, args, model_file):
        self.args = args

        saved_state = load_states_from_checkpoint(model_file)
        set_encoder_params_from_state(saved_state.encoder_params, args)

        tensorizer, reader, optimizer = init_reader_components(
            args.encoder_model_type, args)
        tensorizer.pad_to_max = False
        del optimizer

        reader = reader.cuda()
        reader = reader.eval()
        self.reader = reader
        self.tensorizer = tensorizer

        model_to_load = get_model_obj(self.reader)
        model_to_load.load_state_dict(saved_state.model_dict)
    def _load_saved_state(self, saved_state: CheckpointState):
        epoch = saved_state.epoch
        offset = saved_state.offset
        if offset == 0:  # epoch has been completed
            epoch += 1
        logger.info("Loading checkpoint @ batch=%s and epoch=%s", offset, epoch)
        self.start_epoch = epoch
        self.start_batch = offset

        model_to_load = get_model_obj(self.reader)
        if saved_state.model_dict:
            logger.info("Loading model weights from saved state ...")
            model_to_load.load_state_dict(saved_state.model_dict)

        logger.info("Loading saved optimizer state ...")
        if saved_state.optimizer_dict:
            self.optimizer.load_state_dict(saved_state.optimizer_dict)
        self.scheduler_state = saved_state.scheduler_dict
示例#13
0
    def _load_saved_state(self, saved_state: CheckpointState):
        epoch = saved_state.epoch
        offset = saved_state.offset
        if offset == 0:  # epoch has been completed
            epoch += 1
        logger.info('Loading checkpoint @ batch=%s and epoch=%s', offset, epoch)

        self.start_epoch = epoch
        self.start_batch = offset

        model_to_load = get_model_obj(self.biencoder)
        logger.info('Loading saved model state ...')
        model_to_load.load_state_dict(saved_state.model_dict, strict=False)  # set strict=False if you use extra projection

        if saved_state.optimizer_dict:
            logger.info('Loading saved optimizer state ...')
            self.optimizer.load_state_dict(saved_state.optimizer_dict)

        if saved_state.scheduler_dict:
            self.scheduler_state = saved_state.scheduler_dict
示例#14
0
    def _save_checkpoint(self, scheduler, epoch: int, offset: int) -> str:
        args = self.args
        model_to_save = get_model_obj(self.biencoder)
        cp = os.path.join(
            args.output_dir,
            args.checkpoint_file_name + "." + str(epoch) +
            ("." + str(offset) if offset > 0 else ""),
        )

        meta_params = get_encoder_params_state(args)

        state = CheckpointState(
            model_to_save.state_dict(),
            self.optimizer.state_dict(),
            scheduler.state_dict(),
            offset,
            epoch,
            meta_params,
        )
        torch.save(state._asdict(), cp)
        logger.info("Saved checkpoint at %s", cp)
        return cp
示例#15
0
def setup_dpr(model_file,
              ctx_file,
              encoded_ctx_file,
              hnsw_index=False,
              save_or_load_index=False):
    global retriever
    global all_passages
    global answer_cache
    global answer_cache_path
    parameter_setting = model_file + ctx_file + encoded_ctx_file
    answer_cache_path = hashlib.sha1(
        parameter_setting.encode("utf-8")).hexdigest()
    if os.path.exists(answer_cache_path):
        answer_cache = pickle.load(open(answer_cache_path, 'rb'))
    else:
        answer_cache = {}
    parser = argparse.ArgumentParser()
    add_encoder_params(parser)
    add_tokenizer_params(parser)
    add_cuda_params(parser)

    args = parser.parse_args()
    args.model_file = model_file
    args.ctx_file = ctx_file
    args.encoded_ctx_file = encoded_ctx_file
    args.hnsw_index = hnsw_index
    args.save_or_load_index = save_or_load_index
    args.batch_size = 1  # TODO

    setup_args_gpu(args)
    print_args(args)

    saved_state = load_states_from_checkpoint(args.model_file)
    set_encoder_params_from_state(saved_state.encoder_params, args)

    tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type,
                                                       args,
                                                       inference_only=True)

    encoder = encoder.question_model

    encoder, _ = setup_for_distributed_mode(encoder, None, args.device,
                                            args.n_gpu, args.local_rank,
                                            args.fp16)
    encoder.eval()

    # load weights from the model file
    model_to_load = get_model_obj(encoder)
    logger.info("Loading saved model state ...")

    prefix_len = len("question_model.")
    question_encoder_state = {
        key[prefix_len:]: value
        for (key, value) in saved_state.model_dict.items()
        if key.startswith("question_model.")
    }
    model_to_load.load_state_dict(question_encoder_state)
    vector_size = model_to_load.get_out_size()
    logger.info("Encoder vector_size=%d", vector_size)

    if args.hnsw_index:
        index = DenseHNSWFlatIndexer(vector_size, 50000)
    else:
        index = DenseFlatIndexer(vector_size, 50000,
                                 "IVF65536,PQ64")  #IVF65536

    retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)

    # index all passages
    ctx_files_pattern = args.encoded_ctx_file
    input_paths = glob.glob(ctx_files_pattern)

    index_path = "_".join(input_paths[0].split("_")[:-1])
    if args.save_or_load_index and (os.path.exists(index_path) or
                                    os.path.exists(index_path + ".index.dpr")):
        retriever.index.deserialize_from(index_path)
    else:
        logger.info("Reading all passages data from files: %s", input_paths)
        retriever.index.index_data(input_paths)

        if args.save_or_load_index:
            retriever.index.serialize(index_path)
        # get questions & answers

    all_passages = load_passages(args.ctx_file)
示例#16
0
def main(cfg: DictConfig):
    cfg = setup_cfg_gpu(cfg)
    logger.info("CFG (after gpu  configuration):")
    logger.info("%s", OmegaConf.to_yaml(cfg))

    saved_state = load_states_from_checkpoint(cfg.model_file)
    set_cfg_params_from_state(saved_state.encoder_params, cfg)

    tensorizer, encoder, _ = init_biencoder_components(
        cfg.encoder.encoder_model_type, cfg, inference_only=True)

    encoder_path = cfg.encoder_path
    if encoder_path:
        logger.info("Selecting encoder: %s", encoder_path)
        encoder = getattr(encoder, encoder_path)
    else:
        logger.info("Selecting standard question encoder")
        encoder = encoder.question_model

    encoder, _ = setup_for_distributed_mode(encoder, None, cfg.device,
                                            cfg.n_gpu, cfg.local_rank,
                                            cfg.fp16)
    encoder.eval()

    # load weights from the model file
    model_to_load = get_model_obj(encoder)
    logger.info("Loading saved model state ...")

    encoder_prefix = (encoder_path if encoder_path else "question_model") + "."
    prefix_len = len(encoder_prefix)

    logger.info("Encoder state prefix %s", encoder_prefix)
    question_encoder_state = {
        key[prefix_len:]: value
        for (key, value) in saved_state.model_dict.items()
        if key.startswith(encoder_prefix)
    }
    model_to_load.load_state_dict(question_encoder_state)
    vector_size = model_to_load.get_out_size()
    logger.info("Encoder vector_size=%d", vector_size)

    # get questions & answers
    questions = []
    question_answers = []

    if not cfg.qa_dataset:
        logger.warning("Please specify qa_dataset to use")
        return

    ds_key = cfg.qa_dataset
    logger.info("qa_dataset: %s", ds_key)

    qa_src = hydra.utils.instantiate(cfg.datasets[ds_key])
    qa_src.load_data()

    for ds_item in qa_src.data:
        question, answers = ds_item.query, ds_item.answers
        questions.append(question)
        question_answers.append(answers)

    index = hydra.utils.instantiate(cfg.indexers[cfg.indexer])
    logger.info("Index class %s ", type(index))
    index_buffer_sz = index.buffer_size
    index.init_index(vector_size)
    retriever = LocalFaissRetriever(encoder, cfg.batch_size, tensorizer, index)

    logger.info("Using special token %s", qa_src.special_query_token)
    questions_tensor = retriever.generate_question_vectors(
        questions, query_token=qa_src.special_query_token)

    if qa_src.selector:
        logger.info("Using custom representation token selector")
        retriever.selector = qa_src.selector

    id_prefixes = []
    ctx_sources = []
    for ctx_src in cfg.ctx_datatsets:
        ctx_src = hydra.utils.instantiate(cfg.ctx_sources[ctx_src])
        id_prefixes.append(ctx_src.id_prefix)
        ctx_sources.append(ctx_src)

    logger.info("id_prefixes per dataset: %s", id_prefixes)

    # index all passages
    ctx_files_patterns = cfg.encoded_ctx_files
    index_path = cfg.index_path

    logger.info("ctx_files_patterns: %s", ctx_files_patterns)
    if ctx_files_patterns:
        assert len(ctx_files_patterns) == len(
            id_prefixes), "ctx len={} pref leb={}".format(
                len(ctx_files_patterns), len(id_prefixes))
    else:
        assert (
            index_path
        ), "Either encoded_ctx_files or index_path parameter should be set."

    input_paths = []
    path_id_prefixes = []
    for i, pattern in enumerate(ctx_files_patterns):
        pattern_files = glob.glob(pattern)
        pattern_id_prefix = id_prefixes[i]
        input_paths.extend(pattern_files)
        path_id_prefixes.extend([pattern_id_prefix] * len(pattern_files))

    logger.info("Embeddings files id prefixes: %s", path_id_prefixes)

    if index_path and index.index_exists(index_path):
        logger.info("Index path: %s", index_path)
        retriever.index.deserialize(index_path)
    else:
        logger.info("Reading all passages data from files: %s", input_paths)
        retriever.index_encoded_data(input_paths,
                                     index_buffer_sz,
                                     path_id_prefixes=path_id_prefixes)
        if index_path:
            retriever.index.serialize(index_path)

    # get top k results
    top_ids_and_scores = retriever.get_top_docs(questions_tensor.numpy(),
                                                cfg.n_docs)

    # we no longer need the index
    retriever = None

    all_passages = {}
    for ctx_src in ctx_sources:
        ctx_src.load_data_to(all_passages)

    if len(all_passages) == 0:
        raise RuntimeError(
            "No passages data found. Please specify ctx_file param properly.")

    if cfg.validate_as_tables:
        questions_doc_hits = validate_tables(
            all_passages,
            question_answers,
            top_ids_and_scores,
            cfg.validation_workers,
            cfg.match,
        )
    else:
        questions_doc_hits = validate(
            all_passages,
            question_answers,
            top_ids_and_scores,
            cfg.validation_workers,
            cfg.match,
        )

    if cfg.out_file:
        save_results(
            all_passages,
            questions,
            question_answers,
            top_ids_and_scores,
            questions_doc_hits,
            cfg.out_file,
        )

    if cfg.kilt_out_file:
        kilt_ctx = next(
            iter([
                ctx for ctx in ctx_sources if isinstance(ctx, KiltCsvCtxSrc)
            ]), None)
        if not kilt_ctx:
            raise RuntimeError("No Kilt compatible context file provided")
        assert hasattr(cfg, "kilt_out_file")
        kilt_ctx.convert_to_kilt(qa_src.kilt_gold_file, cfg.out_file,
                                 cfg.kilt_out_file)
示例#17
0
def main(args):
    saved_state = load_states_from_checkpoint(args.model_file)
    set_encoder_params_from_state(saved_state.encoder_params, args)

    tensorizer, encoder, _ = init_biencoder_components(
        args.encoder_model_type, args, inference_only=True)

    encoder = encoder.question_model

    encoder, _ = setup_for_distributed_mode(encoder, None, args.device, args.n_gpu,
                                            args.local_rank,
                                            args.fp16)
    encoder.eval()

    # load weights from the model file
    model_to_load = get_model_obj(encoder)
    logger.info('Loading saved model state ...')

    prefix_len = len('question_model.')
    question_encoder_state = {key[prefix_len:]: value for (key, value) in saved_state.model_dict.items() if
                              key.startswith('question_model.')}
    model_to_load.load_state_dict(question_encoder_state)
    vector_size = model_to_load.get_out_size()
    logger.info('Encoder vector_size=%d', vector_size)

    if args.hnsw_index:
        index = DenseHNSWFlatIndexer(vector_size, args.index_buffer)
    else:
        index = DenseFlatIndexer(vector_size, args.index_buffer)

    retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)

    # index all passages
    ctx_files_pattern = args.encoded_ctx_file
    input_paths = glob.glob(ctx_files_pattern)

    index_path = "_".join(input_paths[0].split("_")[:-1])
    if args.save_or_load_index and (os.path.exists(index_path) or os.path.exists(index_path + ".index.dpr")):
        retriever.index.deserialize_from(index_path)
    else:
        logger.info('Reading all passages data from files: %s', input_paths)
        retriever.index.index_data(input_paths)
        if args.save_or_load_index:
            retriever.index.serialize(index_path)
    # get questions & answers
    questions = []
    question_ids = []

    for ds_item in parse_qa_csv_file(args.qa_file):
        question_id, question = ds_item
        question_ids.append(question_id)
        questions.append(question)

    questions_tensor = retriever.generate_question_vectors(questions)

    # get top k results
    top_ids_and_scores = retriever.get_top_docs(
        questions_tensor.numpy(), args.n_docs)

    # all_passages = load_passages(args.ctx_file)

    # if len(all_passages) == 0:
    #     raise RuntimeError(
    #         'No passages data found. Please specify ctx_file param properly.')

    # questions_doc_hits = validate(all_passages, question_answers, top_ids_and_scores, args.validation_workers,
    #                               args.match)

    if args.out_file:
        save_results(question_ids,
                     top_ids_and_scores, args.out_file)
示例#18
0
def main(cfg: DictConfig):
    cfg = setup_cfg_gpu(cfg)
    saved_state = load_states_from_checkpoint(cfg.model_file)

    set_cfg_params_from_state(saved_state.encoder_params, cfg)

    logger.info("CFG (after gpu  configuration):")
    logger.info("%s", OmegaConf.to_yaml(cfg))

    tensorizer, encoder, _ = init_biencoder_components(
        cfg.encoder.encoder_model_type, cfg, inference_only=True)

    logger.info("Loading saved model state ...")
    encoder.load_state(saved_state, strict=False)

    encoder_path = cfg.encoder_path
    if encoder_path:
        logger.info("Selecting encoder: %s", encoder_path)
        encoder = getattr(encoder, encoder_path)
    else:
        logger.info("Selecting standard question encoder")
        encoder = encoder.question_model

    encoder, _ = setup_for_distributed_mode(encoder, None, cfg.device,
                                            cfg.n_gpu, cfg.local_rank,
                                            cfg.fp16)
    encoder.eval()

    model_to_load = get_model_obj(encoder)
    vector_size = model_to_load.get_out_size()
    logger.info("Encoder vector_size=%d", vector_size)

    # get questions & answers
    questions = []
    questions_text = []
    question_answers = []

    if not cfg.qa_dataset:
        logger.warning("Please specify qa_dataset to use")
        return

    ds_key = cfg.qa_dataset
    logger.info("qa_dataset: %s", ds_key)

    qa_src = hydra.utils.instantiate(cfg.datasets[ds_key])
    qa_src.load_data()

    total_queries = len(qa_src)
    for i in range(total_queries):
        qa_sample = qa_src[i]
        question, answers = qa_sample.query, qa_sample.answers
        questions.append(question)
        question_answers.append(answers)

    logger.info("questions len %d", len(questions))
    logger.info("questions_text len %d", len(questions_text))

    if cfg.rpc_retriever_cfg_file:
        index_buffer_sz = 1000
        retriever = DenseRPCRetriever(
            encoder,
            cfg.batch_size,
            tensorizer,
            cfg.rpc_retriever_cfg_file,
            vector_size,
            use_l2_conversion=cfg.use_l2_conversion,
        )
    else:
        index = hydra.utils.instantiate(cfg.indexers[cfg.indexer])
        logger.info("Local Index class %s ", type(index))
        index_buffer_sz = index.buffer_size
        index.init_index(vector_size)
        retriever = LocalFaissRetriever(encoder, cfg.batch_size, tensorizer,
                                        index)

    logger.info("Using special token %s", qa_src.special_query_token)
    questions_tensor = retriever.generate_question_vectors(
        questions, query_token=qa_src.special_query_token)

    if qa_src.selector:
        logger.info("Using custom representation token selector")
        retriever.selector = qa_src.selector

    index_path = cfg.index_path
    if cfg.rpc_retriever_cfg_file and cfg.rpc_index_id:
        retriever.load_index(cfg.rpc_index_id)
    elif index_path and index.index_exists(index_path):
        logger.info("Index path: %s", index_path)
        retriever.index.deserialize(index_path)
    else:
        # send data for indexing
        id_prefixes = []
        ctx_sources = []
        for ctx_src in cfg.ctx_datatsets:
            ctx_src = hydra.utils.instantiate(cfg.ctx_sources[ctx_src])
            id_prefixes.append(ctx_src.id_prefix)
            ctx_sources.append(ctx_src)
            logger.info("ctx_sources: %s", type(ctx_src))

        logger.info("id_prefixes per dataset: %s", id_prefixes)

        # index all passages
        ctx_files_patterns = cfg.encoded_ctx_files

        logger.info("ctx_files_patterns: %s", ctx_files_patterns)
        if ctx_files_patterns:
            assert len(ctx_files_patterns) == len(
                id_prefixes), "ctx len={} pref leb={}".format(
                    len(ctx_files_patterns), len(id_prefixes))
        else:
            assert (
                index_path or cfg.rpc_index_id
            ), "Either encoded_ctx_files or index_path pr rpc_index_id parameter should be set."

        input_paths = []
        path_id_prefixes = []
        for i, pattern in enumerate(ctx_files_patterns):
            pattern_files = glob.glob(pattern)
            pattern_id_prefix = id_prefixes[i]
            input_paths.extend(pattern_files)
            path_id_prefixes.extend([pattern_id_prefix] * len(pattern_files))
        logger.info("Embeddings files id prefixes: %s", path_id_prefixes)
        logger.info("Reading all passages data from files: %s", input_paths)
        retriever.index_encoded_data(input_paths,
                                     index_buffer_sz,
                                     path_id_prefixes=path_id_prefixes)
        if index_path:
            retriever.index.serialize(index_path)

    # get top k results
    top_results_and_scores = retriever.get_top_docs(questions_tensor.numpy(),
                                                    cfg.n_docs)

    if cfg.use_rpc_meta:
        questions_doc_hits = validate_from_meta(
            question_answers,
            top_results_and_scores,
            cfg.validation_workers,
            cfg.match,
            cfg.rpc_meta_compressed,
        )
        if cfg.out_file:
            save_results_from_meta(
                questions,
                question_answers,
                top_results_and_scores,
                questions_doc_hits,
                cfg.out_file,
                cfg.rpc_meta_compressed,
            )
    else:
        all_passages = get_all_passages(ctx_sources)
        if cfg.validate_as_tables:

            questions_doc_hits = validate_tables(
                all_passages,
                question_answers,
                top_results_and_scores,
                cfg.validation_workers,
                cfg.match,
            )

        else:
            questions_doc_hits = validate(
                all_passages,
                question_answers,
                top_results_and_scores,
                cfg.validation_workers,
                cfg.match,
            )

        if cfg.out_file:
            save_results(
                all_passages,
                questions_text if questions_text else questions,
                question_answers,
                top_results_and_scores,
                questions_doc_hits,
                cfg.out_file,
            )

    if cfg.kilt_out_file:
        kilt_ctx = next(
            iter([
                ctx for ctx in ctx_sources if isinstance(ctx, KiltCsvCtxSrc)
            ]), None)
        if not kilt_ctx:
            raise RuntimeError("No Kilt compatible context file provided")
        assert hasattr(cfg, "kilt_out_file")
        kilt_ctx.convert_to_kilt(qa_src.kilt_gold_file, cfg.out_file,
                                 cfg.kilt_out_file)
示例#19
0
def main(args):
    questions = []
    question_answers = []
    for i, ds_item in enumerate(parse_qa_csv_file(args.qa_file)):
        #if i == 10:
        #    break
        question, answers = ds_item
        questions.append(question)
        question_answers.append(answers)
    if not args.encoder_model_type == 'hf_attention' and not args.encoder_model_type == 'colbert':
        saved_state = load_states_from_checkpoint(args.model_file)
        set_encoder_params_from_state(saved_state.encoder_params, args)

    tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type, args, inference_only=True)

    if not args.encoder_model_type == 'hf_attention' and not args.encoder_model_type == 'colbert':
        encoder = encoder.question_model

    encoder, _ = setup_for_distributed_mode(encoder, None, args.device, args.n_gpu,
                                            args.local_rank,
                                            args.fp16)
    encoder.eval()

    if not args.encoder_model_type == 'hf_attention' and not args.encoder_model_type == 'colbert':
        # load weights from the model file
        model_to_load = get_model_obj(encoder)
        logger.info('Loading saved model state ...')

        prefix_len = len('question_model.')
        question_encoder_state = {key[prefix_len:]: value for (key, value) in saved_state.model_dict.items() if
                                  key.startswith('question_model.')}
        model_to_load.load_state_dict(question_encoder_state)
        vector_size = model_to_load.get_out_size()
        logger.info('Encoder vector_size=%d', vector_size)
    else:
        vector_size = 16

    index_buffer_sz = args.index_buffer

    if args.index_type == 'hnsw':
        index = DenseHNSWFlatIndexer(vector_size, index_buffer_sz)
        index_buffer_sz = -1  # encode all at once
    elif args.index_type == 'custom':
        index = CustomIndexer(vector_size, index_buffer_sz)
    else:
        index = DenseFlatIndexer(vector_size)

    retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index, args.encoder_model_type=='colbert')


    # index all passages
    ctx_files_pattern = args.encoded_ctx_file
    input_paths = glob.glob(ctx_files_pattern)
    #logger.info('Reading all passages data from files: %s', input_paths)
    #memmap = retriever.index_encoded_data(input_paths, buffer_size=index_buffer_sz, memmap=args.encoder_model_type=='colbert')
    print(input_paths)
    index_path = "_".join(input_paths[0].split("_")[:-1])
    memmap_path = 'memmap.npy'
    print(args.save_or_load_index, os.path.exists(index_path), index_path)
    if args.save_or_load_index and os.path.exists(index_path+'.index.dpr'):
    #if False:
        retriever.index.deserialize_from(index_path)
        if args.encoder_model_type=='colbert':
            memmap = np.memmap(memmap_path, dtype=np.float32, mode='w+', shape=(21015324, 250, 16))
        else:
            memmap = None
    else:
        logger.info('Reading all passages data from files: %s', input_paths)
        if args.encoder_model_type=='colbert':
            memmap = np.memmap(memmap_path, dtype=np.float32, mode='w+', shape=(21015324, 250, 16))
        else:
            memmap = None
        retriever.index_encoded_data(input_paths, buffer_size=index_buffer_sz, memmap=memmap)
        if args.save_or_load_index:
            retriever.index.serialize(index_path)
    # get questions & answers



    questions_tensor = retriever.generate_question_vectors(questions)

    # get top k results
    top_ids_and_scores = retriever.get_top_docs(questions_tensor.numpy(), args.n_docs, is_colbert=args.encoder_model_type=='colbert')

    with open('approx_scores.pkl', 'wb') as f:
        pickle.dump(top_ids_and_scores, f)

    retriever.index.index.reset()
    if args.encoder_model_type=='colbert':
        logger.info('Colbert score') 
        top_ids_and_scores_colbert = retriever.colbert_search(questions_tensor.numpy(), memmap, top_ids_and_scores, args.n_docs)

    all_passages = load_passages(args.ctx_file)

    if len(all_passages) == 0:
        raise RuntimeError('No passages data found. Please specify ctx_file param properly.')


    with open('colbert_scores.pkl', 'wb') as f:
        pickle.dump(top_ids_and_scores_colbert, f)

    

    questions_doc_hits = validate(all_passages, question_answers, top_ids_and_scores, args.validation_workers,
                                  args.match)
    if args.encoder_model_type=='colbert':
        questions_doc_hits_colbert = validate(all_passages, question_answers, top_ids_and_scores_colbert, args.validation_workers,
                                  args.match)
        

    if args.out_file:
        save_results(all_passages, questions, question_answers, top_ids_and_scores, questions_doc_hits, args.out_file)
        if args.encoder_model_type=='colbert':
            save_results(all_passages, questions, question_answers, top_ids_and_scores_colbert, questions_doc_hits_colbert, args.out_file+'colbert')
示例#20
0
def main(cfg: DictConfig):

    assert cfg.model_file, "Please specify encoder checkpoint as model_file param"
    assert cfg.ctx_src, "Please specify passages source as ctx_src param"
    print(os.getcwd())
    cfg = setup_cfg_gpu(cfg)

    saved_state = load_states_from_checkpoint(cfg.model_file)
    set_cfg_params_from_state(saved_state.encoder_params, cfg)

    logger.info("CFG:")
    logger.info("%s", OmegaConf.to_yaml(cfg))

    tensorizer, encoder, _ = init_biencoder_components(
        cfg.encoder.encoder_model_type, cfg, inference_only=True)

    encoder = encoder.ctx_model if cfg.encoder_type == "ctx" else encoder.question_model

    encoder, _ = setup_for_distributed_mode(
        encoder,
        None,
        cfg.device,
        cfg.n_gpu,
        cfg.local_rank,
        cfg.fp16,
        cfg.fp16_opt_level,
    )
    encoder.eval()

    # load weights from the model file
    model_to_load = get_model_obj(encoder)
    logger.info("Loading saved model state ...")
    logger.debug("saved model keys =%s", saved_state.model_dict.keys())

    prefix_len = len("ctx_model.")
    ctx_state = {
        key[prefix_len:]: value
        for (key, value) in saved_state.model_dict.items()
        if key.startswith("ctx_model.")
    }
    model_to_load.load_state_dict(ctx_state)

    logger.info("reading data source: %s", cfg.ctx_src)

    ctx_src = hydra.utils.instantiate(cfg.ctx_sources[cfg.ctx_src])
    all_passages_dict = {}
    ctx_src.load_data_to(all_passages_dict)
    all_passages = [(k, v) for k, v in all_passages_dict.items()]

    shard_size = math.ceil(len(all_passages) / cfg.num_shards)
    start_idx = cfg.shard_id * shard_size
    end_idx = start_idx + shard_size

    logger.info(
        "Producing encodings for passages range: %d to %d (out of total %d)",
        start_idx,
        end_idx,
        len(all_passages),
    )
    shard_passages = all_passages[start_idx:end_idx]

    data = gen_ctx_vectors(cfg, shard_passages, encoder, tensorizer, True)

    file = cfg.out_file + "_" + str(cfg.shard_id)
    pathlib.Path(os.path.dirname(file)).mkdir(parents=True, exist_ok=True)
    logger.info("Writing results to %s" % file)
    with open(file, mode="wb") as f:
        pickle.dump(data, f)

    logger.info("Total passages processed %d. Written to %s", len(data), file)
示例#21
0
        from dpr.utils.model_utils import setup_for_distributed_mode, get_model_obj, load_states_from_checkpoint
        from dpr.indexer.faiss_indexers import DenseIndexer, DenseHNSWFlatIndexer, DenseFlatIndexer
        from dense_retriever import DenseRetriever

        saved_state = load_states_from_checkpoint(args.dpr_model_file)
        set_encoder_params_from_state(saved_state.encoder_params, args)
        tensorizer, encoder, _ = init_biencoder_components(args.encoder_model_type, args, inference_only=True)
        encoder = encoder.question_model
        setup_args_gpu(args)
        encoder, _ = setup_for_distributed_mode(encoder, None, args.device, args.n_gpu,
                                                args.local_rank,
                                                args.fp16)
        encoder.eval()

        # load weights from the model file
        model_to_load = get_model_obj(encoder)
        prefix_len = len('question_model.')
        question_encoder_state = {key[prefix_len:]: value for (key, value) in saved_state.model_dict.items() if
                                key.startswith('question_model.')}
        model_to_load.load_state_dict(question_encoder_state)
        vector_size = model_to_load.get_out_size()

        index_buffer_sz = args.index_buffer
        if args.hnsw_index:
            index = DenseHNSWFlatIndexer(vector_size)
            index_buffer_sz = -1  # encode all at once
        else:
            index = DenseFlatIndexer(vector_size)

        retriever = DenseRetriever(encoder, args.batch_size, tensorizer, index)
        retriever.index.deserialize_from(args.dense_index_path)
示例#22
0
    def validate_nll(self) -> float:
        logger.info("NLL validation ...")
        cfg = self.cfg
        self.biencoder.eval()

        if not self.dev_iterator:
            self.dev_iterator = self.get_data_iterator(
                cfg.train.dev_batch_size,
                False,
                shuffle=False,
                rank=cfg.local_rank)
        data_iterator = self.dev_iterator

        total_loss = 0.0
        start_time = time.time()
        total_correct_predictions = 0
        num_hard_negatives = cfg.train.hard_negatives
        num_other_negatives = cfg.train.other_negatives
        log_result_step = cfg.train.log_batch_step
        batches = 0
        dataset = 0
        biencoder = get_model_obj(self.biencoder)

        for i, samples_batch in enumerate(data_iterator.iterate_ds_data()):
            if isinstance(samples_batch, Tuple):
                samples_batch, dataset = samples_batch
            logger.info("Eval step: %d ,rnk=%s", i, cfg.local_rank)

            biencoder_input = biencoder.create_biencoder_input(
                samples_batch,
                self.tensorizer,
                True,
                num_hard_negatives,
                num_other_negatives,
                shuffle=False,
            )

            # get the token to be used for representation selection
            ds_cfg = self.ds_cfg.dev_datasets[dataset]
            rep_positions = ds_cfg.selector.get_positions(
                biencoder_input.question_ids, self.tensorizer)
            encoder_type = ds_cfg.encoder_type

            loss, correct_cnt = _do_biencoder_fwd_pass(
                self.biencoder,
                biencoder_input,
                self.tensorizer,
                cfg,
                encoder_type=encoder_type,
                rep_positions=rep_positions,
            )
            total_loss += loss.item()
            total_correct_predictions += correct_cnt
            batches += 1
            if (i + 1) % log_result_step == 0:
                logger.info(
                    "Eval step: %d , used_time=%f sec., loss=%f ",
                    i,
                    time.time() - start_time,
                    loss.item(),
                )

        total_loss = total_loss / batches
        total_samples = batches * cfg.train.dev_batch_size * self.distributed_factor
        correct_ratio = float(total_correct_predictions / total_samples)
        logger.info(
            "NLL Validation: loss = %f. correct prediction ratio  %d/%d ~  %f",
            total_loss,
            total_correct_predictions,
            total_samples,
            correct_ratio,
        )
        return total_loss
示例#23
0
    def _train_epoch(
        self,
        scheduler,
        epoch: int,
        eval_step: int,
        train_data_iterator: MultiSetDataIterator,
    ):

        cfg = self.cfg
        rolling_train_loss = 0.0
        epoch_loss = 0
        epoch_correct_predictions = 0

        log_result_step = cfg.train.log_batch_step
        rolling_loss_step = cfg.train.train_rolling_loss_step
        num_hard_negatives = cfg.train.hard_negatives
        num_other_negatives = cfg.train.other_negatives
        seed = cfg.seed
        self.biencoder.train()
        epoch_batches = train_data_iterator.max_iterations
        data_iteration = 0

        biencoder = get_model_obj(self.biencoder)
        dataset = 0
        for i, samples_batch in enumerate(
                train_data_iterator.iterate_ds_data(epoch=epoch)):
            if isinstance(samples_batch, Tuple):
                samples_batch, dataset = samples_batch

            ds_cfg = self.ds_cfg.train_datasets[dataset]
            special_token = ds_cfg.special_token
            encoder_type = ds_cfg.encoder_type
            shuffle_positives = ds_cfg.shuffle_positives

            # to be able to resume shuffled ctx- pools
            data_iteration = train_data_iterator.get_iteration()
            random.seed(seed + epoch + data_iteration)

            biencoder_batch = biencoder.create_biencoder_input(
                samples_batch,
                self.tensorizer,
                True,
                num_hard_negatives,
                num_other_negatives,
                shuffle=True,
                shuffle_positives=shuffle_positives,
                query_token=special_token,
            )

            # get the token to be used for representation selection
            from dpr.utils.data_utils import DEFAULT_SELECTOR

            selector = ds_cfg.selector if ds_cfg else DEFAULT_SELECTOR

            rep_positions = selector.get_positions(
                biencoder_batch.question_ids, self.tensorizer)

            loss_scale = cfg.loss_scale_factors[
                dataset] if cfg.loss_scale_factors else None
            loss, correct_cnt = _do_biencoder_fwd_pass(
                self.biencoder,
                biencoder_batch,
                self.tensorizer,
                cfg,
                encoder_type=encoder_type,
                rep_positions=rep_positions,
                loss_scale=loss_scale,
            )

            epoch_correct_predictions += correct_cnt
            epoch_loss += loss.item()
            rolling_train_loss += loss.item()

            if cfg.fp16:
                from apex import amp
                with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                    scaled_loss.backward()
                if cfg.train.max_grad_norm > 0:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(self.optimizer),
                        cfg.train.max_grad_norm)
            else:
                loss.backward()
                if cfg.train.max_grad_norm > 0:
                    torch.nn.utils.clip_grad_norm_(self.biencoder.parameters(),
                                                   cfg.train.max_grad_norm)

            if (i + 1) % cfg.train.gradient_accumulation_steps == 0:
                self.optimizer.step()
                scheduler.step()
                self.biencoder.zero_grad()

            if i % log_result_step == 0:
                lr = self.optimizer.param_groups[0]["lr"]
                logger.info(
                    "Epoch: %d: Step: %d/%d, loss=%f, lr=%f",
                    epoch,
                    data_iteration,
                    epoch_batches,
                    loss.item(),
                    lr,
                )

            if (i + 1) % rolling_loss_step == 0:
                logger.info("Train batch %d", data_iteration)
                latest_rolling_train_av_loss = rolling_train_loss / rolling_loss_step
                logger.info(
                    "Avg. loss per last %d batches: %f",
                    rolling_loss_step,
                    latest_rolling_train_av_loss,
                )
                rolling_train_loss = 0.0

            if data_iteration % eval_step == 0:
                logger.info(
                    "rank=%d, Validation: Epoch: %d Step: %d/%d",
                    cfg.local_rank,
                    epoch,
                    data_iteration,
                    epoch_batches,
                )
                self.validate_and_save(epoch,
                                       train_data_iterator.get_iteration(),
                                       scheduler)
                self.biencoder.train()

        logger.info("Epoch finished on %d", cfg.local_rank)
        self.validate_and_save(epoch, data_iteration, scheduler)

        epoch_loss = (epoch_loss / epoch_batches) if epoch_batches > 0 else 0
        logger.info("Av Loss per epoch=%f", epoch_loss)
        logger.info("epoch total correct predictions=%d",
                    epoch_correct_predictions)
示例#24
0
    def validate_average_rank(self) -> float:
        """
        Validates biencoder model using each question's gold passage's rank across the set of passages from the dataset.
        It generates vectors for specified amount of negative passages from each question (see --val_av_rank_xxx params)
        and stores them in RAM as well as question vectors.
        Then the similarity scores are calculted for the entire
        num_questions x (num_questions x num_passages_per_question) matrix and sorted per quesrtion.
        Each question's gold passage rank in that  sorted list of scores is averaged across all the questions.
        :return: averaged rank number
        """
        logger.info("Average rank validation ...")

        cfg = self.cfg
        self.biencoder.eval()
        distributed_factor = self.distributed_factor

        if not self.dev_iterator:
            self.dev_iterator = self.get_data_iterator(
                cfg.train.dev_batch_size,
                False,
                shuffle=False,
                rank=cfg.local_rank)
        data_iterator = self.dev_iterator

        sub_batch_size = cfg.train.val_av_rank_bsz
        sim_score_f = BiEncoderNllLoss.get_similarity_function()
        q_represenations = []
        ctx_represenations = []
        positive_idx_per_question = []

        num_hard_negatives = cfg.train.val_av_rank_hard_neg
        num_other_negatives = cfg.train.val_av_rank_other_neg

        log_result_step = cfg.train.log_batch_step
        dataset = 0
        biencoder = get_model_obj(self.biencoder)
        for i, samples_batch in enumerate(data_iterator.iterate_ds_data()):
            # samples += 1
            if len(q_represenations
                   ) > cfg.train.val_av_rank_max_qs / distributed_factor:
                break

            if isinstance(samples_batch, Tuple):
                samples_batch, dataset = samples_batch

            biencoder_input = biencoder.create_biencoder_input(
                samples_batch,
                self.tensorizer,
                True,
                num_hard_negatives,
                num_other_negatives,
                shuffle=False,
            )
            total_ctxs = len(ctx_represenations)
            ctxs_ids = biencoder_input.context_ids
            ctxs_segments = biencoder_input.ctx_segments
            bsz = ctxs_ids.size(0)

            # get the token to be used for representation selection
            ds_cfg = self.ds_cfg.dev_datasets[dataset]
            encoder_type = ds_cfg.encoder_type
            rep_positions = ds_cfg.selector.get_positions(
                biencoder_input.question_ids, self.tensorizer)

            # split contexts batch into sub batches since it is supposed to be too large to be processed in one batch
            for j, batch_start in enumerate(range(0, bsz, sub_batch_size)):

                q_ids, q_segments = ((biencoder_input.question_ids,
                                      biencoder_input.question_segments)
                                     if j == 0 else (None, None))

                if j == 0 and cfg.n_gpu > 1 and q_ids.size(0) == 1:
                    # if we are in DP (but not in DDP) mode, all model input tensors should have batch size >1 or 0,
                    # otherwise the other input tensors will be split but only the first split will be called
                    continue

                ctx_ids_batch = ctxs_ids[batch_start:batch_start +
                                         sub_batch_size]
                ctx_seg_batch = ctxs_segments[batch_start:batch_start +
                                              sub_batch_size]

                q_attn_mask = self.tensorizer.get_attn_mask(q_ids)
                ctx_attn_mask = self.tensorizer.get_attn_mask(ctx_ids_batch)
                with torch.no_grad():
                    q_dense, ctx_dense = self.biencoder(
                        q_ids,
                        q_segments,
                        q_attn_mask,
                        ctx_ids_batch,
                        ctx_seg_batch,
                        ctx_attn_mask,
                        encoder_type=encoder_type,
                        representation_token_pos=rep_positions,
                    )

                if q_dense is not None:
                    q_represenations.extend(q_dense.cpu().split(1, dim=0))

                ctx_represenations.extend(ctx_dense.cpu().split(1, dim=0))

            batch_positive_idxs = biencoder_input.is_positive
            positive_idx_per_question.extend(
                [total_ctxs + v for v in batch_positive_idxs])

            if (i + 1) % log_result_step == 0:
                logger.info(
                    "Av.rank validation: step %d, computed ctx_vectors %d, q_vectors %d",
                    i,
                    len(ctx_represenations),
                    len(q_represenations),
                )

        ctx_represenations = torch.cat(ctx_represenations, dim=0)
        q_represenations = torch.cat(q_represenations, dim=0)

        logger.info("Av.rank validation: total q_vectors size=%s",
                    q_represenations.size())
        logger.info("Av.rank validation: total ctx_vectors size=%s",
                    ctx_represenations.size())

        q_num = q_represenations.size(0)
        assert q_num == len(positive_idx_per_question)

        scores = sim_score_f(q_represenations, ctx_represenations)
        values, indices = torch.sort(scores, dim=1, descending=True)

        rank = 0
        for i, idx in enumerate(positive_idx_per_question):
            # aggregate the rank of the known gold passage in the sorted results for each question
            gold_idx = (indices[i] == idx).nonzero()
            rank += gold_idx.item()

        if distributed_factor > 1:
            # each node calcuated its own rank, exchange the information between node and calculate the "global" average rank
            # NOTE: the set of passages is still unique for every node
            eval_stats = all_gather_list([rank, q_num], max_size=100)
            for i, item in enumerate(eval_stats):
                remote_rank, remote_q_num = item
                if i != cfg.local_rank:
                    rank += remote_rank
                    q_num += remote_q_num

        av_rank = float(rank / q_num)
        logger.info("Av.rank validation: average rank %s, total questions=%d",
                    av_rank, q_num)
        return av_rank