示例#1
0
    def __init__(self):
        train_seed, val_seed, test_seed = 0, 1, 2
        train = EmnistObjectDetectionDataset(
            n_examples=int(cfg.n_train), example_range=cfg.train_example_range, seed=train_seed)

        val = EmnistObjectDetectionDataset(
            n_examples=int(cfg.n_val), example_range=cfg.val_example_range, seed=val_seed)

        test = EmnistObjectDetectionDataset(
            n_examples=int(cfg.n_val), example_range=cfg.test_example_range, seed=test_seed)

        self.datasets = dict(train=train, val=val, test=test)
示例#2
0
from dps.datasets import EmnistObjectDetectionDataset
"""
The main takeaway from this is that AffineGridWarper layers an axis (-1, 1) x (-1, 1) over the input
image, with y increasing downward and x increasing rightward.
"""

n_examples = 10
image_shape = (28, 28, 3)
crop_shape = (14, 14, 3)
cfg.batch_size = 10

with tf.Session().as_default():
    _train = EmnistObjectDetectionDataset(
        n_examples=n_examples,
        min_chars=2,
        max_chars=2,
        patch_shape=crop_shape[:2],
        characters=[0],
        max_overlap=1000,
        image_shape=image_shape[:2]).sample(n_examples)
    images = _train["image"]
"""
A = [a, b, tx],
    [c, d, ty]
"""

boxes = np.array([[.5, 0, .5, 0, .5, -.5]], dtype='f')
A = boxes.reshape(2, 3)

# top-left, bottom-right
corners = np.array([[-1, -1, 1], [1, 1, 1]], dtype='f').T
corners = A @ corners
示例#3
0
config = yolo_rl.good_config.copy(
    prepare_func=prepare_func,
    patience=10000,
    render_step=100000,
    lr_schedule=1e-4,
    max_overlap=40,
    hooks=[],
    n_val=16,
    eval_step=1000,
    max_steps=100000,

    fixed_values=dict(),

    curriculum=[
        dict(fixed_values=dict(obj=1), max_steps=10000),
        dict(obj_exploration=0.2,),
        dict(obj_exploration=0.1,),
        dict(obj_exploration=0.1, lr_schedule=1e-5),
        dict(obj_exploration=0.1, lr_schedule=1e-6),
    ],
)

# Create the datasets if necessary.
with config:
    train = EmnistObjectDetectionDataset(n_examples=int(config.n_train), shuffle=True, example_range=(0.0, 0.9))
    val = EmnistObjectDetectionDataset(n_examples=int(config.n_val), shuffle=True, example_range=(0.9, 1.))

from dps.hyper import build_and_submit
clify.wrap_function(build_and_submit)(config=config, distributions=distributions)