示例#1
0
def transforms(model_type="dpt_hybrid"):
    import cv2
    from torchvision.transforms import Compose
    from dpt.models import DPTDepthModel
    from dpt.midas_net import MidasNet_large
    from dpt.transforms import Resize, NormalizeImage, PrepareForNet

    if model_type == "dpt_large":  # DPT-Large
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
                                       std=[0.5, 0.5, 0.5])
    elif model_type == "dpt_hybrid":  # DPT-Hybrid
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
                                       std=[0.5, 0.5, 0.5])
    else:
        raise ValueError(
            "Only support model type dpt_large or dpt_hybrid, dpt_hybrid for default setting"
        )

    transform = Compose([
        Resize(
            384,
            384,
            resize_target=None,
            keep_aspect_ratio=True,
            ensure_multiple_of=32,
            resize_method="minimal",
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        normalization,
        PrepareForNet(),
    ])

    return transform
def preprocess(img_raw):
    net_w = 576
    net_h = 384
    func = Resize(net_w,
                  net_h,
                  resize_target=None,
                  keep_aspect_ratio=False,
                  ensure_multiple_of=32,
                  resize_method="minimal",
                  image_interpolation_method=cv2.INTER_CUBIC)
    img = func({"image": img_raw})
    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
    img = normalization(img)
    img = PrepareForNet()(img)
    img = img["image"]
    return img
def run(input_path,
        output_path,
        model_path,
        model_type="dpt_hybrid",
        optimize=True):
    """Run MonoDepthNN to compute depth maps.

    Args:
        input_path (str): path to input folder
        output_path (str): path to output folder
        model_path (str): path to saved model
    """
    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    # load network
    if model_type == "dpt_large":  # DPT-Large
        net_w = net_h = 384
        model = DPTDepthModel(
            path=model_path,
            backbone="vitl16_384",
            non_negative=True,
            enable_attention_hooks=args.vis,
        )
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
                                       std=[0.5, 0.5, 0.5])
    elif model_type == "dpt_hybrid":  # DPT-Hybrid
        net_w = net_h = 384
        model = DPTDepthModel(
            path=model_path,
            backbone="vitb_rn50_384",
            non_negative=True,
            enable_attention_hooks=args.vis,
        )
        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
                                       std=[0.5, 0.5, 0.5])
    elif model_type == "dpt_hybrid_kitti":
        net_w = 1216
        net_h = 352

        model = DPTDepthModel(
            path=model_path,
            scale=0.00006016,
            shift=0.00579,
            invert=True,
            backbone="vitb_rn50_384",
            non_negative=True,
            enable_attention_hooks=args.vis,
        )

        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
                                       std=[0.5, 0.5, 0.5])
    elif model_type == "dpt_hybrid_nyu":
        net_w = 640
        net_h = 480

        model = DPTDepthModel(
            path=model_path,
            scale=0.000305,
            shift=0.1378,
            invert=True,
            backbone="vitb_rn50_384",
            non_negative=True,
            enable_attention_hooks=args.vis,
        )

        normalization = NormalizeImage(mean=[0.5, 0.5, 0.5],
                                       std=[0.5, 0.5, 0.5])
    elif model_type == "midas_v21":  # Convolutional model
        net_w = net_h = 384

        model = MidasNet_large(model_path, non_negative=True)
        normalization = NormalizeImage(mean=[0.485, 0.456, 0.406],
                                       std=[0.229, 0.224, 0.225])
    else:
        assert (
            False
        ), f"model_type '{model_type}' not implemented, use: --model_type [dpt_large|dpt_hybrid|dpt_hybrid_kitti|dpt_hybrid_nyu|midas_v21]"

    transform = Compose([
        Resize(
            net_w,
            net_h,
            resize_target=None,
            keep_aspect_ratio=True,
            ensure_multiple_of=32,
            resize_method="minimal",
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        normalization,
        PrepareForNet(),
    ])

    model.eval()

    if optimize == True and device == torch.device("cuda"):
        model = model.to(memory_format=torch.channels_last)
        model = model.half()

    model.to(device)

    # get input
    img_names = glob.glob(os.path.join(input_path, "*"))
    num_images = len(img_names)

    # create output folder
    os.makedirs(output_path, exist_ok=True)

    print("start processing")
    for ind, img_name in enumerate(img_names):
        if os.path.isdir(img_name):
            continue

        print("  processing {} ({}/{})".format(img_name, ind + 1, num_images))
        # input

        img = util.io.read_image(img_name)

        if args.kitti_crop is True:
            height, width, _ = img.shape
            top = height - 352
            left = (width - 1216) // 2
            img = img[top:top + 352, left:left + 1216, :]

        img_input = transform({"image": img})["image"]

        # compute
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)

            if optimize == True and device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)
                sample = sample.half()

            prediction = model.forward(sample)
            prediction = (torch.nn.functional.interpolate(
                prediction.unsqueeze(1),
                size=img.shape[:2],
                mode="bicubic",
                align_corners=False,
            ).squeeze().cpu().numpy())

            if model_type == "dpt_hybrid_kitti":
                prediction *= 256

            if model_type == "dpt_hybrid_nyu":
                prediction *= 1000.0

            if args.vis:
                visualize_attention(sample, model, prediction, args.model_type)

        filename = os.path.join(
            output_path,
            os.path.splitext(os.path.basename(img_name))[0])
        util.io.write_depth(filename, prediction, bits=2)

    print("finished")
示例#4
0
def dpt(input_path, output_path):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    #load network: model_type == "dpt_hybrid_nyu"
    net_w = 640
    net_h = 480
    model = DPTDepthModel(
        path="dpt/weights/dpt_hybrid_nyu-2ce69ec7.pt",
        scale=0.000305,
        shift=0.1378,
        invert=True,
        backbone="vitb_rn50_384",
        non_negative=True,
        enable_attention_hooks=False,
    )
    normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])

    transform = Compose(
        [
            Resize(
                net_w,
                net_h,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            normalization,
            PrepareForNet(),
        ]
    )
    
    model.eval()

    if device == torch.device("cuda"):
        model = model.to(memory_format=torch.channels_last)
        model = model.half()

    model.to(device)

    # predict depth for single image
    img_names = os.listdir(input_path+"single/")
    num_images = len(img_names)
    
    print("Monocular Depth Prediction (Single Images)")
    for idx, img_name in enumerate(img_names):
        # progress
        print("  processing {} ({}/{})".format(img_name, idx + 1, num_images))
        
        img = img2np(input_path+"single/"+img_name)
        img_input = transform({"image": img})["image"]

        # prediction
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)

            if device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)
                sample = sample.half()

            prediction = model.forward(sample)
            prediction = (
                torch.nn.functional.interpolate(
                    prediction.unsqueeze(1),
                    size=img.shape[:2],
                    mode="bicubic",
                    align_corners=False,
                )
                .squeeze()
                .cpu()
                .numpy()
            )
        
        df_pred = pd.DataFrame(prediction)
        df_pred.to_csv(output_path+"single/"+img_name.replace(".png",".csv"), index=False)

    # predict depth for single image
    img_names = os.listdir(input_path+"crop/")
    num_images = len(img_names)
    
    print("Monocular Depth Prediction (Cropped Images)")
    for idx, img_name in enumerate(img_names):
        # progress
        print("  processing {} ({}/{})".format(img_name, idx + 1, num_images))
        
        img = img2np(input_path+"crop/"+img_name)
        img_input = transform({"image": img})["image"]

        # prediction
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)

            if device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)
                sample = sample.half()

            prediction = model.forward(sample)
            prediction = (
                torch.nn.functional.interpolate(
                    prediction.unsqueeze(1),
                    size=img.shape[:2],
                    mode="bicubic",
                    align_corners=False,
                )
                .squeeze()
                .cpu()
                .numpy()
            )
        
        df_pred = pd.DataFrame(prediction)
        df_pred.to_csv(output_path+"crop/"+img_name.replace(".png",".csv"), index=False)
示例#5
0
def transforms():
    import cv2
    from torchvision.transforms import Compose
    from dpt.transforms import Resize, NormalizeImage, PrepareForNet
    from dpt import transforms

    transforms.midas_transform = Compose(
        [
            lambda img: {"image": img / 255.0},
            Resize(
                384,
                384,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
            PrepareForNet(),
            lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
        ]
    )

    transforms.dpt_transform = Compose(
        [
            lambda img: {"image": img / 255.0},
            Resize(
                384,
                384,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            PrepareForNet(),
            lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
        ]
    )

    transforms.kitti_transform = Compose(
        [
            lambda img: {"image": img / 255.0},
            Resize(
                1216,
                352,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            PrepareForNet(),
            lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
        ]
    )

    transforms.nyu_transform = Compose(
        [
            lambda img: {"image": img / 255.0},
            Resize(
                640,
                480,
                resize_target=None,
                keep_aspect_ratio=True,
                ensure_multiple_of=32,
                resize_method="minimal",
                image_interpolation_method=cv2.INTER_CUBIC,
            ),
            NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            PrepareForNet(),
            lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0),
        ]
    )

    return transforms
示例#6
0
def run(input_path,
        output_path,
        model_path,
        model_type="dpt_hybrid",
        optimize=True):
    """Run segmentation network

    Args:
        input_path (str): path to input folder
        output_path (str): path to output folder
        model_path (str): path to saved model
    """
    print("initialize")

    # select device
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    print("device: %s" % device)

    net_w = net_h = 480

    # load network
    if model_type == "dpt_large":
        model = DPTSegmentationModel(
            150,
            path=model_path,
            backbone="vitl16_384",
        )
    elif model_type == "dpt_hybrid":
        model = DPTSegmentationModel(
            150,
            path=model_path,
            backbone="vitb_rn50_384",
        )
    else:
        assert (
            False
        ), f"model_type '{model_type}' not implemented, use: --model_type [dpt_large|dpt_hybrid]"

    transform = Compose([
        Resize(
            net_w,
            net_h,
            resize_target=None,
            keep_aspect_ratio=True,
            ensure_multiple_of=32,
            resize_method="minimal",
            image_interpolation_method=cv2.INTER_CUBIC,
        ),
        NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
        PrepareForNet(),
    ])

    model.eval()

    if optimize == True and device == torch.device("cuda"):
        model = model.to(memory_format=torch.channels_last)
        model = model.half()

    model.to(device)

    # get input
    img_names = glob.glob(os.path.join(input_path, "*"))
    num_images = len(img_names)

    # create output folder
    os.makedirs(output_path, exist_ok=True)

    print("start processing")

    for ind, img_name in enumerate(img_names):

        print("  processing {} ({}/{})".format(img_name, ind + 1, num_images))

        # input
        img = util.io.read_image(img_name)
        img_input = transform({"image": img})["image"]

        # compute
        with torch.no_grad():
            sample = torch.from_numpy(img_input).to(device).unsqueeze(0)
            if optimize == True and device == torch.device("cuda"):
                sample = sample.to(memory_format=torch.channels_last)
                sample = sample.half()

            out = model.forward(sample)

            prediction = torch.nn.functional.interpolate(out,
                                                         size=img.shape[:2],
                                                         mode="bicubic",
                                                         align_corners=False)
            prediction = torch.argmax(prediction, dim=1) + 1
            prediction = prediction.squeeze().cpu().numpy()

        # output
        filename = os.path.join(
            output_path,
            os.path.splitext(os.path.basename(img_name))[0])
        util.io.write_segm_img(filename, img, prediction, alpha=0.5)

    print("finished")