示例#1
0
def add_update_defs(graph_def, optimizer):
    """Add the update defs."""
    grads, update_defs = [], []
    extra_arguments = optimizer._extra_kwargs
    extra_arguments['handle'] = optimizer._op_handle
    # Generate op defs according to the collected updates
    current_ws = workspace.get_workspace()
    for (param, grad), arguments in optimizer._param_group:
        if current_ws.has_tensor(grad):
            grads.append(grad)
            arguments = dict(arguments, **extra_arguments)
            update_defs.append(
                proto_util.make_operator_def(op_type=optimizer._op_type,
                                             inputs=[grad],
                                             outputs=[param],
                                             name=OpDef.get_name(),
                                             **arguments))
        else:
            logging.info('Skip to update Tensor({}).'.format(param))
    # Insert a reduce def if the process group is found.
    process_group = optimizer._process_group
    if process_group is not None:
        update_defs.insert(
            0,
            proto_util.make_operator_def(op_type='Collective',
                                         inputs=grads,
                                         outputs=grads,
                                         name=OpDef.get_name(),
                                         operation='MEAN',
                                         communication='ALLREDUCE',
                                         **process_group.arguments))
    graph_def.op.extend(update_defs)
示例#2
0
def load_weights_from_pickle(f, layer, verbose=False):
    ws = workspace.get_workspace()
    weight_dict = six.moves.pickle.load(f)
    for weight in layer.weights:
        name = weight.name
        if name in weight_dict:
            value = weight_dict[name]
            value_shape = list(value.shape)
            weight_shape = list(weight.shape)
            if value_shape != weight_shape:
                raise ValueError(
                    'Shape of weight({}) is ({}), \n'
                    'While load from shape of ({}).'
                    .format(name, ', '.join(
                        [str(d) for d in weight_shape]),
                        ', '.join([str(d) for d in value_shape]))
                )
            weight_impl = ws.GetTensor(weight.id)
            if weight_impl is not None:
                weight_impl.FromNumpy(value.copy())
                if verbose:
                    logging.info(
                        'Weight({}) loaded, Size: ({})'
                        .format(name, ', '.join([str(d) for d in value_shape])))
            else:
                logging.warning(
                    'Weight({}) is not created '
                    'in current workspace. Skip.'.format(name))
示例#3
0
 def create_graph(self, graph_def):
     """Create a graph."""
     cfg = config.config()
     if cfg.graph_verbosity == 2:
         msg = '\n' + str(graph_def)[:-1]
         logging.info('\ngraph {' + msg.replace('\n', '\n  ') + '\n}\n')
     return self._impl.CreateGraph(serialization.serialize_proto(graph_def),
                                   cfg.graph_verbosity == 1)
示例#4
0
        def cleanup():
            def terminate(processes):
                for p in processes:
                    p.terminate()
                    p.join()

            terminate(self._workers)
            if rank == 0:
                logging.info('Terminate DataWorker.')
            terminate(self._readers)
            if rank == 0:
                logging.info('Terminate DataReader.')
示例#5
0
 def _get_learning_rate(self):
     """Get the learning rate based on preset policy."""
     policy = self._proto.lr_policy
     if policy == "step":
         new_step = int(self.iter / self._proto.stepsize)
         if self._current_step != new_step:
             new_lr = self._proto.base_lr * pow(self._proto.gamma, new_step)
             self._current_step = new_step
             self.base_lr = new_lr
     elif policy == 'multistep':
         if self._current_step < len(self._proto.stepvalue) \
                 and self.iter >= self._proto.stepvalue[self._current_step]:
             self._current_step = self._current_step + 1
             logging.info(
                 'MultiStep Status: Iteration {}, step = {}'.format(
                     self.iter, self._current_step))
             new_lr = (self._proto.base_lr *
                       pow(self._proto.gamma, self._current_step))
             self.base_lr = new_lr
     elif policy == 'multifixed':
         stage_lrs = self._proto.stage_lr
         stage_iters = self._proto.stage_iter
         if self.iter < stage_iters[self._current_step]:
             self.base_lr = stage_lrs[self._current_step]
         else:
             if self._current_step + 1 < len(stage_iters):
                 self._current_step = self._current_step + 1
                 logging.info(
                     'MultiFixed Status: Iteration {}, stage = {}'.format(
                         self.iter, self._current_step))
                 self.base_lr = stage_lrs[self._current_step]
     elif policy == 'inv':
         power = self._proto.power
         gamma = self._proto.gamma
         self.base_lr = (self._proto.base_lr *
                         pow(1. + gamma * self.iter, -power))
     elif policy == 'poly':
         power = self._proto.power
         max_iter = self._proto.max_iter
         self.base_lr = (self._proto.base_lr *
                         pow(1. - float(self.iter) / max_iter, power))
示例#6
0
    def create_graph(self, graph_def):
        """Create the graph.

        Parameters
        ----------
        graph_def : GraphDef
            The ``GraphDef`` protocol buffer.

        Returns
        -------
        str
            The graph name.

        """
        cfg = config.config()
        if cfg.graph_verbosity == 2:
            msg = '\n' + str(graph_def)[:-1]
            logging.info('\ngraph {' + msg.replace('\n', '\n  ') + '\n}\n')
        return self.CreateGraph(
            serialization.serialize_proto(graph_def),
            cfg.graph_verbosity == 1)
示例#7
0
    def test(self, test_idx):
        """Test the specific net.

        Parameters
        ----------
        test_idx : int
            The index of test net.

        """
        net = self._test_nets[test_idx]
        net.copy_from(self._net.to_proto())
        test_iter = self._proto.test_iter[test_idx]
        test_scores = collections.defaultdict(float)
        for iter in range(test_iter):
            net.forward()
            for key in net.outputs:
                test_scores[key] += float(net.blobs[key].data.numpy().mean())
        logging.info('Iteration {}, Test net #{}'.format(self.iter, test_idx))
        for i, (key, score) in enumerate(test_scores.items()):
            logging.info(' ' * 4 + 'Test net output #%d(%s): %.4f' %
                         (i, key, score / test_iter))
示例#8
0
    def step(self, num_iterations=1):
        """Step the train net.

        Parameters
        ----------
        num_iterations : int, optional, default=1
            The number of iterations to step.

        """
        end_iter = self.iter + num_iterations
        tic = time.time()
        while self.iter < end_iter:
            # Test if necessary.
            if (self._proto.test_interval > 0
                    and self.iter % self._proto.test_interval == 0):
                if (self.iter == 0
                        and self._proto.test_initialization) or self.iter != 0:
                    for test_idx in range(len(self._test_nets)):
                        self.test(test_idx)
            # Forward and backward pass.
            self._net.forward()
            # Display iteration info.
            if self._is_root and self._proto.display:
                if self.iter % self._proto.display == 0:
                    logging.info('Iteration %d, lr = %f, time = %.2fs' %
                                 (self.iter, self.base_lr, time.time() - tic))
                    tic = time.time()
                    for i, key in enumerate(self.net.outputs):
                        value = self.net.blobs[key].data.numpy().mean()
                        logging.info(' ' * 4 +
                                     'Train net output #{}({}): {}'.format(
                                         i, key, value))
            # Apply Update.
            self._get_learning_rate()
            self._apply_update()
            self.iter = self.iter + 1
            # Snapshot if necessary.
            if self._proto.snapshot:
                if self.iter % self._proto.snapshot == 0:
                    self.snapshot()
示例#9
0
    def export_to(self, name=None, export_dir='./'):
        """Export the graph into a text file.

        Parameters
        ----------
        name : str
            The optional graph name.
        export_dir : str
            The directory to export the file.

        """
        if not os.path.exists(export_dir):
            try:
                os.makedirs(export_dir)
            except Exception:
                raise ValueError('The given directory can not be created.')
        graph_def = copy.deepcopy(self.graph_def)
        graph_def.name = self.graph_def.name if name is None else name
        path = os.path.join(export_dir, graph_def.name + '.graph')
        with open(path, 'w') as f:
            f.write(str(graph_def))
        logging.info('Export meta graph into: {}'.format(path))
示例#10
0
    def load_weights(self, filepath, format=None, skip=False, verbose=False):
        """Load model weights from a binary file.

        Parameters
        ----------
        filepath : str
            The path of weights file.
        format : {'hdf5', 'npz', 'pkl', 'npz_dict'}, optional
            The optional saving format.
        skip : bool, optional, default=False
            ``True`` to skip the modules which is not found.
        verbose: bool, optional, default=False
            ``True`` to print the matched weights.

        """
        if not os.path.exists(filepath):
            raise FileNotFoundError("File {} doesn't exist.".format(filepath))

        if format is None:
            format = filepath.split('.')[-1]

        if format == 'hdf5' or format == 'h5':
            matched_info = files.load_hdf5_to_weights(filepath, self, skip)
        elif format == 'npz':
            matched_info = files.load_and_assign_npz(filepath, self)
        elif format == 'pkl':
            matched_info = files.load_and_assign_pkl_dict(filepath, self, skip)
        elif format == 'npz_dict':
            matched_info = files.load_and_assign_npz_dict(filepath, self, skip)
        else:
            raise ValueError(
                "Saving format should be in ('hdf5', 'npz', 'pkl', 'npz_dict').\n"
                "Format <%s> is not supported." % format)

        if verbose:
            for info in matched_info:
                logging.info('Weight({}) loaded, Size: ({})'.format(
                    info[0], ', '.join([str(d) for d in info[1]])))
示例#11
0
    def from_proto(self, proto):
        """Deserialize from the proto.

        Parameters
        ----------
        proto : LayerParameter
            The ``LayerParameter`` protocol buffer.

        """
        for i in range(len(self._blobs)):
            if i < len(proto.blobs):
                blob_proto = proto.blobs[i]
                if len(blob_proto.data) > 0:
                    value = numpy.array(blob_proto.data, dtype='float32')
                elif len(blob_proto.double_data) > 0:
                    value = numpy.array(blob_proto.double_data, dtype='float64')
                else:
                    raise ValueError('Neither <data> or <double_data> in blob proto.')
                if len(blob_proto.shape.dim) > 0:
                    value = value.reshape([dim for dim in blob_proto.shape.dim])
                self._blobs[i]['data'].set_value(value)
                logging.info('Blob({}/param:{}) loaded, shape: {}, size: {}'
                             .format(self._name, i, value.shape, value.size))
示例#12
0
文件: solver.py 项目: ORG-MARS/dragon
    def test(self, test_idx):
        """Test the specific net.

        Parameters
        ----------
        test_idx : int
            The idx of test net.

        """
        test_score, output_id = [], []
        net = self._test_nets[test_idx]
        test_iter = self._param.test_iter[test_idx]

        for iter in range(test_iter):
            net.forward()
            if not self._is_root:
                continue
            if iter == 0:
                for key in net.outputs:
                    values = net.blobs[key].data.get_value().flatten()
                    for idx, value in enumerate(values):
                        test_score.append(value)
                        output_id.append(key)
            else:
                i = 0
                for key in net.outputs:
                    values = net.blobs[key].data.get_value().flatten()
                    for idx, value in enumerate(values):
                        test_score[i] += value
                        i += 1

        logging.info('Iteration {}, Test net #{}'.format(self.iter, test_idx))
        for i, score in enumerate(test_score):
            logging.info(
                ' ' * 10 + 'Test net output #%d(%s): %.4f'
                % (i, output_id[i], score / test_iter))
示例#13
0
    def __init__(self, cuda_engine, device_id=0):
        """Create an ``Engine``.

        Parameters
        ----------
        cuda_engine : tensorrt.ICudaEngine
            The built cuda engine.
        device_id : int, optional, default=0
            The index of executing device.

        """
        # Create executing resources.
        self._cuda_engine = cuda_engine
        self._device_id = device_id
        self._context = cuda_engine.create_execution_context()
        self._stream = driver.Stream(0)

        # Create bindings.
        num_binding = self._cuda_engine.num_bindings
        self._bindings = [
            Binding(cuda_engine, self._context, i, device_id)
            for i in range(num_binding)
        ]
        self._inputs = [b for b in self._bindings if b.is_input]
        self._outputs = [b for b in self._bindings if not b.is_input]

        # Report the engine info.
        logging.info('TensorRT engine built.')
        binding_info = 'InputInfo: {\n'
        for b in self._inputs:
            binding_info += '  * Binding("{}", shape={}, dtype={})\n' \
                            .format(b.name, b.shape, b.dtype)
        logging.info(binding_info + '}')
        binding_info = 'OutputInfo: {\n'
        for b in self._outputs:
            binding_info += '  * Binding("{}", shape={}, dtype={})\n' \
                            .format(b.name, b.shape, b.dtype)
        logging.info(binding_info + '}')
示例#14
0
文件: solver.py 项目: ORG-MARS/dragon
    def step(self, num_iterations=1):
        """Step the train net.

        Parameters
        ----------
        num_iterations : int, optional, default=1
            The number of iterations to step.

        """
        start_step = self.iter
        stop_step = start_step + num_iterations
        loss_vec, smoothed_loss = [], 0.

        tic = time.time()
        while self.iter < stop_step:
            # Test if necessary.
            if self._is_root and self._param.test_interval > 0 and \
                    self.iter % self._param.test_interval == 0:
                if (self.iter == 0 and self._param.test_initialization) or \
                        self.iter != 0:
                    for test_idx in range(len(self._test_nets)):
                        self.test(test_idx)
            # Forward, backward and compute loss.
            loss = 0.
            for i in range(self._param.iter_size):
                self._net.forward_backward()
                if self._is_root:
                    for e in self.net.losses:
                        values = e.get_value().flatten()
                        for v in values:
                            loss += v
            if self._is_root:
                loss /= self._param.iter_size
                if len(loss_vec) < self._param.average_loss:
                    loss_vec.append(loss)
                    smoothed_loss *= (len(loss_vec) - 1)
                    smoothed_loss += loss
                    smoothed_loss /= len(loss_vec)
                else:
                    idx = (self.iter - start_step) % self._param.average_loss
                    smoothed_loss += ((loss - loss_vec[idx]) / self._param.average_loss)
                    loss_vec[idx] = loss
            # Apply Update.
            self._get_learning_rate()
            self._apply_update()
            # Display iteration info.
            if self._is_root and self._param.display:
                if self.iter % self._param.display == 0:
                    logging.info(
                        'Iteration %d, lr = %s, loss = %f, time = %.2fs'
                        % (self.iter, str(self.base_lr), smoothed_loss, time.time() - tic))
                    tic = time.time()
                    for idx, net_output in enumerate(self.net.outputs):
                        values = self.net.blobs[net_output].data.get_value().flatten()
                        for v in values:
                            logging.info(
                                ' ' * 10 + 'Train net output #{}({}): {}'
                                .format(idx, net_output, v))
            self.iter = self.iter + 1
            # Snapshot if necessary.
            if self._param.snapshot:
                if self.iter % self._param.snapshot == 0:
                    self.snapshot()