示例#1
0
 def __init__(self, num_classes=1000):
     super(AlexNet, self).__init__()
     self.features = nn.Sequential(
         nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
         nn.ReLU(inplace=True),
         nn.MaxPool2d(kernel_size=3, stride=2),
         nn.Conv2d(64, 192, kernel_size=5, padding=2),
         nn.ReLU(inplace=True),
         nn.MaxPool2d(kernel_size=3, stride=2),
         nn.Conv2d(192, 384, kernel_size=3, padding=1),
         nn.ReLU(inplace=True),
         nn.Conv2d(384, 256, kernel_size=3, padding=1),
         nn.ReLU(inplace=True),
         nn.Conv2d(256, 256, kernel_size=3, padding=1),
         nn.ReLU(inplace=True),
         nn.MaxPool2d(kernel_size=3, stride=2),
     )
     self.classifier = nn.Sequential(
         nn.Dropout(),
         nn.Linear(256 * 6 * 6, 4096),
         nn.ReLU(inplace=True),
         nn.Dropout(),
         nn.Linear(4096, 4096),
         nn.ReLU(inplace=True),
         nn.Linear(4096, num_classes),
     )
示例#2
0
    def __init__(self, version=1.0, num_classes=1000):
        super(SqueezeNet, self).__init__()
        if version not in [1.0, 1.1]:
            raise ValueError("Unsupported SqueezeNet version {version}:"
                             "1.0 or 1.1 expected".format(version=version))
        self.num_classes = num_classes
        if version == 1.0:
            self.features = nn.Sequential(
                nn.Conv2d(3, 96, kernel_size=7, stride=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(96, 16, 64, 64),
                Fire(128, 16, 64, 64),
                Fire(128, 32, 128, 128),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(256, 32, 128, 128),
                Fire(256, 48, 192, 192),
                Fire(384, 48, 192, 192),
                Fire(384, 64, 256, 256),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(512, 64, 256, 256),
            )
        else:
            self.features = nn.Sequential(
                nn.Conv2d(3, 64, kernel_size=3, stride=2),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(64, 16, 64, 64),
                Fire(128, 16, 64, 64),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(128, 32, 128, 128),
                Fire(256, 32, 128, 128),
                nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
                Fire(256, 48, 192, 192),
                Fire(384, 48, 192, 192),
                Fire(384, 64, 256, 256),
                Fire(512, 64, 256, 256),
            )
        # Final convolution is initialized differently form the rest
        final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
        self.classifier = nn.Sequential(
            nn.Dropout(p=0.5),
            final_conv,
            nn.ReLU(inplace=True),
            nn.AvgPool2d(13, stride=1)
        )

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                if m is final_conv:
                    init.normal_(m.weight, mean=0.0, std=0.01)
                else:
                    init.kaiming_uniform_(m.weight)
                if m.bias is not None:
                    init.constant_(m.bias, 0)
示例#3
0
 def __init__(self, inplanes, squeeze_planes,
              expand1x1_planes, expand3x3_planes):
     super(Fire, self).__init__()
     self.inplanes = inplanes
     self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
     self.squeeze_activation = nn.ReLU(inplace=True)
     self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
                                kernel_size=1)
     self.expand1x1_activation = nn.ReLU(inplace=True)
     self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
                                kernel_size=3, padding=1)
     self.expand3x3_activation = nn.ReLU(inplace=True)
示例#4
0
    def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(3,
                               64,
                               kernel_size=7,
                               stride=2,
                               padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight,
                                        mode='fan_out',
                                        nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                if hasattr(m, 'zero_init'):
                    nn.init.constant_(m.weight, 0)
                else:
                    nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
示例#5
0
def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=3,
                     stride=stride,
                     padding=1,
                     bias=False)
示例#6
0
 def __init__(self, inplanes, planes, stride=1, downsample=None):
     super(Bottleneck, self).__init__()
     self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
     self.bn1 = nn.BatchNorm2d(planes)
     self.conv2 = nn.Conv2d(planes,
                            planes,
                            kernel_size=3,
                            stride=stride,
                            padding=1,
                            bias=False)
     self.bn2 = nn.BatchNorm2d(planes)
     self.conv3 = nn.Conv2d(planes,
                            planes * self.expansion,
                            kernel_size=1,
                            bias=False)
     self.bn3 = nn.BatchNorm2d(planes * self.expansion)
     self.bn3.zero_init = True
     self.relu = nn.ReLU(inplace=True)
     self.downsample = downsample
     self.stride = stride
示例#7
0
文件: vgg.py 项目: nethorse/Dragon-1
def make_layers(cfg, batch_norm=False):
    layers = []
    in_channels = 3
    for v in cfg:
        if v == 'M':
            layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
        else:
            conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
            if batch_norm:
                layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
            else:
                layers += [conv2d, nn.ReLU(inplace=True)]
            in_channels = v
    return nn.Sequential(*layers)
示例#8
0
    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)
示例#9
0
 def __init__(self, in_channels, out_channels, **kwargs):
     super(BasicConv2d, self).__init__()
     self.conv = nn.Conv2d(in_channels, out_channels, bias=False, **kwargs)
     self.bn = nn.BatchNorm2d(out_channels, eps=0.001)
     self.relu = nn.ReLU(inplace=True)