示例#1
0
def main_train(pos_sequences=None,
               neg_sequences=None,
               prefix=None,
               arch_file=None,
               weights_file=None,
               **kwargs):
    kwargs = {key: value for key, value in kwargs.items() if value is not None}
    # encode fastas
    print("loading sequence data...")
    X_pos = encode_fasta_sequences(pos_sequences)
    y_pos = np.array([[True]]*len(X_pos))
    X_neg = encode_fasta_sequences(neg_sequences)
    y_neg = np.array([[False]]*len(X_neg))
    X = np.concatenate((X_pos, X_neg))
    y = np.concatenate((y_pos, y_neg))
    X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2)
    if arch_file is not None: # load  model
        print("loading model...")
        model = SequenceDNN.load(arch_file, weights_file)
    else: # initialize model
        print("initializing model...")
        model = SequenceDNN(seq_length=X_train.shape[-1], **kwargs)
    # train
    print("starting model training...")
    model.train(X_train, y_train, validation_data=(X_valid, y_valid))
    valid_result = model.test(X_valid, y_valid)
    print("final validation metrics:")
    print(valid_result)
    # save
    print("saving model files..")
    model.save(prefix)
    print("Done!")
示例#2
0
def main_train(pos_sequences=None,
               neg_sequences=None,
               prefix=None,
               arch_file=None,
               weights_file=None,
               **kwargs):
    kwargs = {key: value for key, value in kwargs.items() if value is not None}
    # encode fastas
    print("loading sequence data...")
    X_pos = encode_fasta_sequences(pos_sequences)
    y_pos = np.array([[True]] * len(X_pos))
    X_neg = encode_fasta_sequences(neg_sequences)
    y_neg = np.array([[False]] * len(X_neg))
    X = np.concatenate((X_pos, X_neg))
    y = np.concatenate((y_pos, y_neg))
    X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2)
    if arch_file is not None:  # load  model
        print("loading model...")
        model = SequenceDNN.load(arch_file, weights_file)
    else:  # initialize model
        print("initializing model...")
        model = SequenceDNN(seq_length=X_train.shape[-1], **kwargs)
    # train
    print("starting model training...")
    model.train(X_train, y_train, validation_data=(X_valid, y_valid))
    valid_result = model.test(X_valid, y_valid)
    print("final validation metrics:")
    print(valid_result)
    # save
    print("saving model files..")
    model.save(prefix)
    print("Done!")
示例#3
0
def main_train(pos_sequences=None,
               neg_sequences=None,
               prefix=None,
               model_file=None,
               weights_file=None):
    # encode fastas
    print("loading sequence data...")
    X_pos = encode_fasta_sequences(pos_sequences)
    y_pos = np.array([[True]]*len(X_pos))
    X_neg = encode_fasta_sequences(neg_sequences)
    y_neg = np.array([[False]]*len(X_neg))
    X = np.concatenate((X_pos, X_neg))
    y = np.concatenate((y_pos, y_neg))
    X_train, X_valid, y_train, y_valid = train_test_split(X, y, test_size=0.2)
    if model_file is not None and weights_file is not None: # load  model
        print("loading model...")
        model = SequenceDNN.load(model_file, weights_file)
    else: # initialize model
        print("initializing model...")
        model = SequenceDNN(seq_length=X_train.shape[-1])
    # train
    print("starting model training...")
    model.train(X_train, y_train, validation_data=(X_valid, y_valid))
    valid_result = model.test(X_valid, y_valid)
    print("final validation metrics:")
    print(valid_result)
    # save
    print("saving model files..")
    model.save("%s.model.json" % (prefix), "%s.weights.hd5" % (prefix))
    print("Done!")
示例#4
0
def run(use_deep_CNN, use_RNN, label, golden_first_sequence, golden_results):
    seq_length = 100
    num_sequences = 200
    num_positives = 100
    num_negatives = num_sequences - num_positives
    GC_fraction = 0.4
    test_fraction = 0.2
    num_epochs = 1
    sequences, labels, embeddings = simulate_single_motif_detection(
        'SPI1_disc1', seq_length, num_positives, num_negatives, GC_fraction)
    assert sequences[0] == golden_first_sequence, 'first sequence = {}, golden = {}'.format(
        sequences[0], golden_first_sequence)
    encoded_sequences = one_hot_encode(sequences)
    X_train, X_test, y_train, y_test = train_test_split(
        encoded_sequences, labels, test_size=test_fraction)
    X_train = np.concatenate((X_train, reverse_complement(X_train)))
    y_train = np.concatenate((y_train, y_train))
    random_order = np.arange(len(X_train))
    np.random.shuffle(random_order)
    X_train = X_train[random_order]
    y_train = y_train[random_order]
    hyperparameters = {'seq_length': seq_length, 'use_RNN': use_RNN,
                       'num_filters': (45,), 'pool_width': 25, 'conv_width': (10,),
                       'L1': 0, 'dropout': 0.2, 'num_epochs': num_epochs}
    if use_deep_CNN:
        hyperparameters.update({'num_filters': (45, 50, 50), 'conv_width': (10, 8, 5)})
    if use_RNN:
        hyperparameters.update({'GRU_size': 35, 'TDD_size': 45})
    model = SequenceDNN(**hyperparameters)
    model.train(X_train, y_train, validation_data=(X_test, y_test))
    results = model.test(X_test, y_test).results[0]
    assert np.allclose(tuple(results.values()), tuple(golden_results.values())), \
        '{}: result = {}, golden = {}'.format(label, results, golden_results)
示例#5
0
def run(use_deep_CNN, use_RNN, label, golden_results):
    seq_length = 100
    num_sequences = 200
    test_fraction = 0.2
    num_epochs = 1
    sequences = np.array([''.join(random.choice('ACGT') for base in range(seq_length)) for sequence in range(num_sequences)])
    labels = np.random.choice((True, False), size=num_sequences)[:, None]
    encoded_sequences = one_hot_encode(sequences)
    X_train, X_test, y_train, y_test = train_test_split(
        encoded_sequences, labels, test_size=test_fraction)
    X_train = np.concatenate((X_train, reverse_complement(X_train)))
    y_train = np.concatenate((y_train, y_train))
    random_order = np.arange(len(X_train))
    np.random.shuffle(random_order)
    X_train = X_train[random_order]
    y_train = y_train[random_order]
    hyperparameters = {'seq_length': seq_length, 'use_RNN': use_RNN,
                       'num_filters': (45,), 'pool_width': 25, 'conv_width': (10,),
                       'L1': 0, 'dropout': 0.2, 'num_epochs': num_epochs}
    if use_deep_CNN:
        hyperparameters.update({'num_filters': (45, 50, 50), 'conv_width': (10, 8, 5)})
    if use_RNN:
        hyperparameters.update({'GRU_size': 35, 'TDD_size': 45})
    model = SequenceDNN(**hyperparameters)
    model.train(X_train, y_train, validation_data=(X_test, y_test))
    results = model.test(X_test, y_test).results[0]
    assert np.allclose(tuple(results.values()), tuple(golden_results.values())), \
        '{}: result = {}, golden = {}'.format(label, results, golden_results)
def train_test_dnn_vary_parameter(prefix,
                                  model_parameters,
                                  param_name,
                                  param_values,
                                  X_train=None, y_train=None,
                                  X_valid=None, y_valid=None,
                                  X_test=None, y_test=None):
    X_train = np.concatenate((X_train, reverse_complement(X_train)))
    y_train = np.concatenate((y_train, y_train))
    dnn_results = []
    for param_value in param_values:
        model_parameters[param_name] = param_value
        ofname_infix = dict2string(model_parameters)
        ofname_prefix = "%s.%s" % (prefix, ofname_infix)
        model_fname = "%s.arch.json" % (ofname_prefix)
        weights_fname = "%s.weights.hd5" % (ofname_prefix)
        try:
            logger.debug("Checking for model files {} and {}...".format(model_fname, weights_fname))
            dnn = SequenceDNN.load(model_fname, weights_fname)
            logger.debug("Model files found. Loaded model successfully!")
        except:
            logger.debug("Model files not found. Training model...")
            dnn = SequenceDNN(**model_parameters)
            logger.info("training with %s %s .." % (param_name, param_value))
            dnn.train(X_train, y_train, (X_valid, y_valid))
            dnn.save(model_fname, weights_fname)
        dnn_results.append(dnn.test(X_test, y_test))
        
    return dnn_results
def train_test_dnn_vary_parameter(prefix,
                                  model_parameters,
                                  param_name,
                                  param_values,
                                  X_train=None,
                                  y_train=None,
                                  X_valid=None,
                                  y_valid=None,
                                  X_test=None,
                                  y_test=None):
    X_train = np.concatenate((X_train, reverse_complement(X_train)))
    y_train = np.concatenate((y_train, y_train))
    dnn_results = []
    for param_value in param_values:
        model_parameters[param_name] = param_value
        ofname_infix = dict2string(model_parameters)
        ofname_prefix = "%s.%s" % (prefix, ofname_infix)
        model_fname = "%s.arch.json" % (ofname_prefix)
        weights_fname = "%s.weights.h5" % (ofname_prefix)
        try:
            logger.debug("Checking for model files {} and {}...".format(
                model_fname, weights_fname))
            dnn = SequenceDNN.load(model_fname, weights_fname)
            logger.debug("Model files found. Loaded model successfully!")
        except:
            logger.debug("Model files not found. Training model...")
            dnn = SequenceDNN(**model_parameters)
            logger.info("training with %s %s .." % (param_name, param_value))
            dnn.train(X_train, y_train, (X_valid, y_valid))
            dnn.save(ofname_prefix)
        dnn_results.append(dnn.test(X_test, y_test))

    return dnn_results
def train_test_dnn_vary_data_size(prefix,
                                  model_parameters=None,
                                  X_train=None,
                                  y_train=None,
                                  X_valid=None,
                                  y_valid=None,
                                  X_test=None,
                                  y_test=None,
                                  train_set_sizes=None):
    dnn_results = []
    for train_set_size in train_set_sizes:
        ofname_infix = dict2string(model_parameters)
        ofname_infix = "%s.train_set_size_%s" % (ofname_infix,
                                                 str(train_set_size))
        ofname_prefix = "%s.%s" % (prefix, ofname_infix)
        model_fname = "%s.arch.json" % (ofname_prefix)
        weights_fname = "%s.weights.h5" % (ofname_prefix)
        try:
            logger.debug("Checking for model files {} and {}...".format(
                model_fname, weights_fname))
            best_dnn = SequenceDNN.load(model_fname, weights_fname)
            logger.debug("Model files found. Loaded model successfully!")
        except:
            logger.debug("Model files not found. Training model...")
            # try 3 attempts, take best auROC, save that model
            X_train_subset = X_train[:train_set_size]
            X_train_subset = np.concatenate(
                (X_train_subset, reverse_complement(X_train_subset)))
            y_train_subset = np.concatenate(
                (y_train[:train_set_size], y_train[:train_set_size]))
            best_auROC = 0
            best_dnn = None
            for random_seed in [1, 2, 3]:
                np.random.seed(random_seed)
                random.seed(random_seed)
                dnn = SequenceDNN(**model_parameters)
                logger.info("training with %i examples.." % (train_set_size))
                dnn.train(X_train_subset, y_train_subset, (X_valid, y_valid))
                result = dnn.test(X_test, y_test)
                auROCs = [
                    result.results[i]["auROC"]
                    for i in range(y_valid.shape[-1])
                ]
                # get average auROC across tasks
                mean_auROC = sum(auROCs) / len(auROCs)
                if mean_auROC > best_auROC:
                    best_auROC = mean_auROC
                    dnn.save(ofname_prefix)
                    best_dnn = dnn
        dnn_results.append(best_dnn.test(X_test, y_test))
    # reset to original random seed
    np.random.seed(1)
    random.seed(1)
    return dnn_results
示例#9
0
def run(use_deep_CNN, use_RNN, label, golden_results):
    import random
    np.random.seed(1)
    random.seed(1)
    from dragonn.models import SequenceDNN
    from simdna.simulations import simulate_single_motif_detection
    from dragonn.utils import one_hot_encode, reverse_complement
    from sklearn.cross_validation import train_test_split
    seq_length = 50
    num_sequences = 100
    num_positives = 50
    num_negatives = num_sequences - num_positives
    GC_fraction = 0.4
    test_fraction = 0.2
    validation_fraction = 0.2
    num_epochs = 1

    sequences, labels = simulate_single_motif_detection(
        'SPI1_disc1', seq_length, num_positives, num_negatives, GC_fraction)
    encoded_sequences = one_hot_encode(sequences)
    X_train, X_test, y_train, y_test = train_test_split(
        encoded_sequences, labels, test_size=test_fraction)
    X_train, X_valid, y_train, y_valid = train_test_split(
        X_train, y_train, test_size=validation_fraction)
    X_train = np.concatenate((X_train, reverse_complement(X_train)))
    y_train = np.concatenate((y_train, y_train))
    random_order = np.arange(len(X_train))
    np.random.shuffle(random_order)
    X_train = X_train[random_order]
    y_train = y_train[random_order]
    hyperparameters = {
        'seq_length': seq_length,
        'use_RNN': use_RNN,
        'num_filters': (45, ),
        'pool_width': 25,
        'conv_width': (10, ),
        'L1': 0,
        'dropout': 0.2,
        'num_epochs': num_epochs
    }
    if use_deep_CNN:
        hyperparameters.update({
            'num_filters': (45, 50, 50),
            'conv_width': (10, 8, 5)
        })
    if use_RNN:
        hyperparameters.update({'GRU_size': 35, 'TDD_size': 45})
    model = SequenceDNN(**hyperparameters)
    model.train(X_train, y_train, validation_data=(X_valid, y_valid))
    results = model.test(X_test, y_test).results[0]
    assert np.allclose(tuple(results.values()), tuple(golden_results.values())), \
        '{}: result = {}, golden = {}'.format(label, results, golden_results)
示例#10
0
def main_train(pos_sequences=None,
               neg_sequences=None,
               pos_validation_sequences=None,
               neg_validation_sequences=None,
               prefix=None,
               arch_file=None,
               weights_file=None,
               **kwargs):
    kwargs = {key: value for key, value in kwargs.items() if value is not None}
    # encode fastas
    print("loading sequence data...")
    X_pos = encode_fasta_sequences(pos_sequences)
    y_pos = np.array([[True]] * len(X_pos))
    X_neg = encode_fasta_sequences(neg_sequences)
    y_neg = np.array([[False]] * len(X_neg))
    X = np.concatenate((X_pos, X_neg))
    y = np.concatenate((y_pos, y_neg))
    #if a validation set is provided by the user, encode that as well
    if (pos_validation_sequences != None or neg_validation_sequences != None):
        #both positive and negative validation sequences must be provided.
        assert neg_validation_sequences != None
        assert pos_validation_sequences != None
        X_valid_pos = encode_fasta_sequences(pos_validation_sequences)
        X_valid_neg = encode_fasta_sequences(neg_validation_sequences)
        y_valid_pos = np.array([[True]]) * len(X_valid_pos)
        y_valid_neg = np.array([[False]]) * len(X_valid_neg)
        X_valid = np.concatenate((X_valid_pos, X_valid_neg))
        y_valid = np.concatenate((y_valid_pos, y_valid_neg))
    else:
        X_train, X_valid, y_train, y_valid = train_test_split(X,
                                                              y,
                                                              test_size=0.2)
    if arch_file is not None:  # load  model
        print("loading model...")
        model = SequenceDNN.load(model_hdf5_file, arch_file, weights_file)
    else:  # initialize model
        print("initializing model...")
        model = SequenceDNN(seq_length=X_train.shape[-1], **kwargs)
    # train
    print("starting model training...")
    model.train(X_train, y_train, validation_data=(X_valid, y_valid))
    valid_result = model.test(X_valid, y_valid)
    print("final validation metrics:")
    print(valid_result)
    # save
    print("saving model files..")
    model.save(prefix)
    print("Done!")
def train_test_dnn_vary_data_size(prefix, model_parameters=None,
                                  X_train=None, y_train=None,
                                  X_valid=None, y_valid=None,
                                  X_test=None, y_test=None,
                                  train_set_sizes=None):
    dnn_results = []
    for train_set_size in train_set_sizes:
        ofname_infix = dict2string(model_parameters)
        ofname_infix = "%s.train_set_size_%s" % (ofname_infix, str(train_set_size))
        ofname_prefix = "%s.%s" % (prefix, ofname_infix)
        model_fname = "%s.arch.json" % (ofname_prefix)
        weights_fname = "%s.weights.hd5" % (ofname_prefix)
        try:
            logger.debug("Checking for model files {} and {}...".format(model_fname, weights_fname))
            best_dnn = SequenceDNN.load(model_fname, weights_fname)
            logger.debug("Model files found. Loaded model successfully!")
        except:
            logger.debug("Model files not found. Training model...")
            # try 3 attempts, take best auROC, save that model
            X_train_subset = X_train[:train_set_size]
            X_train_subset = np.concatenate((X_train_subset, reverse_complement(X_train_subset)))
            y_train_subset = np.concatenate((y_train[:train_set_size], y_train[:train_set_size]))
            best_auROC = 0
            best_dnn = None
            for random_seed in [1, 2, 3]:
                np.random.seed(random_seed)
                random.seed(random_seed)
                dnn = SequenceDNN(**model_parameters)
                logger.info("training with %i examples.." % (train_set_size))
                dnn.train(X_train_subset, y_train_subset, (X_valid, y_valid))
                result = dnn.test(X_test, y_test)
                auROCs = [result.results[i]["auROC"] for i in range(y_valid.shape[-1])]
                # get average auROC across tasks
                mean_auROC = sum(auROCs) / len(auROCs)
                if mean_auROC > best_auROC:
                    best_auROC = mean_auROC
                    dnn.save(model_fname, weights_fname)
                    best_dnn = dnn
        dnn_results.append(best_dnn.test(X_test, y_test))
    # reset to original random seed
    np.random.seed(1)
    random.seed(1)
    return dnn_results
示例#12
0
def run(use_deep_CNN, use_RNN, label, golden_results):
    seq_length = 100
    num_sequences = 200
    test_fraction = 0.2
    num_epochs = 1
    sequences = np.array([
        ''.join(random.choice('ACGT') for base in range(seq_length))
        for sequence in range(num_sequences)
    ])
    labels = np.random.choice((True, False), size=num_sequences)[:, None]
    encoded_sequences = one_hot_encode(sequences)
    X_train, X_test, y_train, y_test = train_test_split(
        encoded_sequences, labels, test_size=test_fraction)
    X_train = np.concatenate((X_train, reverse_complement(X_train)))
    y_train = np.concatenate((y_train, y_train))
    random_order = np.arange(len(X_train))
    np.random.shuffle(random_order)
    X_train = X_train[random_order]
    y_train = y_train[random_order]
    hyperparameters = {
        'seq_length': seq_length,
        'use_RNN': use_RNN,
        'num_filters': (45, ),
        'pool_width': 25,
        'conv_width': (10, ),
        'L1': 0,
        'dropout': 0.2,
        'num_epochs': num_epochs
    }
    if use_deep_CNN:
        hyperparameters.update({
            'num_filters': (45, 50, 50),
            'conv_width': (10, 8, 5)
        })
    if use_RNN:
        hyperparameters.update({'GRU_size': 35, 'TDD_size': 45})
    model = SequenceDNN(**hyperparameters)
    model.train(X_train, y_train, validation_data=(X_test, y_test))
    results = model.test(X_test, y_test).results[0]
    assert np.allclose(tuple(results.values()), tuple(golden_results.values())), \
        '{}: result = {}, golden = {}'.format(label, results, golden_results)
np.random.shuffle(random_order)
X_train = X_train[random_order]
y_train = y_train[random_order]

# Build and train model

if not do_hyperparameter_search:
    hyperparameters = {'seq_length': seq_length, 'use_RNN': use_RNN,
                       'num_filters': (45,), 'pool_width': 25, 'conv_width': (10,),
                       'L1': 0, 'dropout': 0.2, 'num_epochs': num_epochs}
    if use_deep_CNN:
        hyperparameters.update({'num_filters': (45, 50, 50), 'conv_width': (10, 8, 5)})
    if use_RNN:
        hyperparameters.update({'GRU_size': 35, 'TDD_size': 45})
    model = SequenceDNN(**hyperparameters)
    model.train(X_train, y_train, validation_data=(X_valid, y_valid))

else:
    print('Starting hyperparameter search...')
    from dragonn.hyperparameter_search import HyperparameterSearcher
    fixed_hyperparameters = {'seq_length': seq_length, 'use_RNN': use_RNN, 'num_epochs': num_epochs}
    grid = {'num_filters': ((5, 100),), 'pool_width': (5, 40),
            'conv_width': ((6, 20),), 'dropout': (0, 0.5)}
    if use_deep_CNN:
        grid.update({'num_filters': ((5, 100), (5, 100), (5, 100)),
                     'conv_width': ((6, 20), (6, 20), (6, 20))})
    if use_RNN:
        grid.update({'GRU_size': (10, 50), 'TDD_size': (20, 60)})

    # Backend is RandomSearch; if using Python 2, can also specify MOESearch
    # (requires separate installation)
示例#14
0
np.random.shuffle(random_order)
X_train = X_train[random_order]
y_train = y_train[random_order]

# Build and train model

if not do_hyperparameter_search:
    hyperparameters = {'seq_length': seq_length, 'use_RNN': use_RNN,
                       'num_filters': (45,), 'pool_width': 25, 'conv_width': (10,),
                       'L1': 0, 'dropout': 0.2, 'num_epochs': num_epochs}
    if use_deep_CNN:
        hyperparameters.update({'num_filters': (45, 50, 50), 'conv_width': (10, 8, 5)})
    if use_RNN:
        hyperparameters.update({'GRU_size': 35, 'TDD_size': 45})
    model = SequenceDNN(**hyperparameters)
    model.train(X_train, y_train, validation_data=(X_valid, y_valid),
                save_best_model_to_prefix='best_model')

else:
    print('Starting hyperparameter search...')
    from dragonn.hyperparameter_search import HyperparameterSearcher, RandomSearch
    fixed_hyperparameters = {'seq_length': seq_length, 'use_RNN': use_RNN, 'num_epochs': num_epochs}
    grid = {'num_filters': ((5, 100),), 'pool_width': (5, 40),
            'conv_width': ((6, 20),), 'dropout': (0, 0.5)}
    if use_deep_CNN:
        grid.update({'num_filters': ((5, 100), (5, 100), (5, 100)),
                     'conv_width': ((6, 20), (6, 20), (6, 20))})
    if use_RNN:
        grid.update({'GRU_size': (10, 50), 'TDD_size': (20, 60)})

    # Backend is RandomSearch; if using Python 2, can also specify MOESearch
    # (requires separate installation)