示例#1
0
def case3():
    y0 = [[5, -3], [2, 0], [-2, 3]]
    t_tuple = 10
    stepsize = 0.01
    order = 3
    start = time.time()
    t_points, y_list = simulation_ode(fvdp2, y0, t_tuple, stepsize, eps=0)
    end_simulation = time.time()
    result_coef, calcdiff_time, pseudoinv_time = infer_dynamic(
        t_points, y_list, stepsize, order)
    end_inference = time.time()

    print(result_coef)
    print()
    print("Total time: ", end_inference - start)
    print("Simulation time: ", end_simulation - start)
    print("Calc-diff time: ", calcdiff_time)
    print("Pseudoinv time: ", pseudoinv_time)
    draw2D(y_list)
示例#2
0
def case1():
    y0 = [[a, b] for a in np.arange(-0.5, 0.5 + 0.25, 0.25)
          for b in np.arange(-2.5, -1.5 + 0.25, 0.25)]
    t_tuple = 1
    stepsize = 0.001
    order = 2

    start = time.time()
    t_points, y_list = simulation_ode(fvdp2_1, y0, t_tuple, stepsize, eps=0)
    end_simulation = time.time()
    result_coef, calcdiff_time, pseudoinv_time = infer_dynamic(
        t_points, y_list, stepsize, order)
    end_inference = time.time()

    print(result_coef)
    print()
    print("Total time: ", end_inference - start)
    print("Simulation time: ", end_simulation - start)
    print("Calc-diff time: ", calcdiff_time)
    print("Pseudoinv time: ", pseudoinv_time)
    draw2D(y_list)
示例#3
0
def case2():
    y0 = [[a, b] for a in np.arange(-0.5, 0.5 + 0.25, 0.25)
          for b in np.arange(-2.5, -1.5 + 0.25, 0.25)]
    t_tuple = 1
    stepsize = 0.001
    order = 2

    start = time.time()
    y_list_20 = []
    y_list_ave = []
    t_points = []
    for i in range(0, 20):
        t_points, y_list = simulation_ode(fvdp2_1,
                                          y0,
                                          t_tuple,
                                          stepsize,
                                          eps=0.01)
        y_list_20.append(y_list)

    for j in range(0, len(y_list_20[0])):
        y_ppoints = np.zeros(
            (y_list_20[0][0].shape[0], y_list_20[0][0].shape[1]))
        for i in range(0, 20):
            y_ppoints = y_ppoints + y_list_20[i][j]
        y_ppoints = y_ppoints / 20.0
        y_list_ave.append(y_ppoints)

    end_simulation = time.time()
    result_coef, calcdiff_time, pseudoinv_time = infer_dynamic(
        t_points, y_list_ave, stepsize, order)
    end_inference = time.time()

    print(result_coef)
    print()
    print("Total time: ", end_inference - start)
    print("Simulation time: ", end_simulation - start)
    print("Calc-diff time: ", calcdiff_time)
    print("Pseudoinv time: ", pseudoinv_time)
    draw2D(y_list_ave)
示例#4
0
def case10():
    y0 = [[-1,1],[1,4],[2,-3]]
    t_tuple = [(0,5),(0,5),(0,5)]
    stepsize = 0.01
    maxorder = 2
    # start = time.time()
    def labeltest(y):
        if eventtr_1(0,y)<0 and eventtr_2(0,y)>0:
            return 0
        elif eventtr_1(0,y)>=0 and eventtr_2(0,y)>0:
            return 1
        else:
            return 2

    t_list, y_list = simulation_ode_3([modetr_1, modetr_2, modetr_3], [eventtr_1,eventtr_2,eventtr_2], labeltest, y0, t_tuple, stepsize)
    draw2D(y_list)
    A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
    P,G,D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder, 0.01)
    print(P)
    print(G)
    print(D)
    # for p in P:
    #     print(len(p))
    # tpar_list,ypar_list = parti(t_list,y_list,0.2,1/3)
    
    # for temp in tpar_list:
    #     print(temp[-1])
    # labels = infer_dynamic_modes_ex_dbs(tpar_list, ypar_list, stepsize, maxorder, 0.02)
    # print(labels)
    # draw2D(ypar_list)
    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    plt.show()
    
    P,G = reclass(A,b,P,0.01)
    for p in P:
        print(len(p))
    print(G)

    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    plt.show()
    P,D = dropclass(P,G,D,A,b,Y,0.01,0.01)
    print(D)
    for i in range(0,len(P)):
        y0_list = []
        y1_list = []
        for j in range(0,len(P[i])):
            y0_list.append(Y[P[i][j],0])
            y1_list.append(Y[P[i][j],1])
    
        plt.scatter(y0_list,y1_list,s=1)
    # plt.show()
    
    y=[]
    x=[]

    for j in range(0,len(P[2])):
        y.append(1)
        x.append({1:Y[P[2][j],0], 2:Y[P[2][j],1]})
    
    for j in range(0,len(P[1])):
        y.append(-1)
        x.append({1:Y[P[1][j],0], 2:Y[P[1][j],1]})
    
    for j in range(0,len(P[0])):
        y.append(-1)
        x.append({1:Y[P[0][j],0], 2:Y[P[0][j],1]})

    prob  = svm_problem(y, x)
    param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0')
    m = svm_train(prob, param)
    svm_save_model('model_file', m)
    print("pred")
    p_label, p_acc, p_val = svm_predict(y, x, m)
    # print(p_label)
    nsv = m.get_nr_sv()
    svc = m.get_sv_coef()
    sv = m.get_SV()
    # print(nsv)
    # print(svc)
    # print(sv)
    
    # def clafun(x):
    #     g = -m.rho[0]
    #     for i in range(0,nsv):
    #         g = g + svc[i][0] * ((0.5 * (x[0]*sv[i][1] + x[1]*sv[i][2]))**3)
    #     return g

    g = -m.rho[0]
    a1 = 0
    a2 = 0
    for i in range(0,nsv):
        a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
        a2 = a2 + svc[i][0] * 0.5 * sv[i][2]
        g = g + svc[i][0]*1
    print(a1)
    print(a2)
    print(g)

    def f(x,y):
        g = -m.rho[0]
        for i in range(0,nsv):
            g = g + svc[i][0] * (0.5*(x*sv[i][1]+y*sv[i][2])+1)
        return g

    x=[]
    y=[]

    for j in range(0,len(P[1])):
        y.append(1)
        x.append({1:Y[P[1][j],0], 2:Y[P[1][j],1]})
    
    for j in range(0,len(P[0])):
        y.append(-1)
        x.append({1:Y[P[0][j],0], 2:Y[P[0][j],1]})

    prob  = svm_problem(y, x)
    param = svm_parameter('-t 1 -d 1 -c 100 -r 1 -b 0')
    m = svm_train(prob, param)
    svm_save_model('model_file', m)
    print("pred")
    p_label, p_acc, p_val = svm_predict(y, x, m)
    # print(p_label)
    nsv = m.get_nr_sv()
    svc = m.get_sv_coef()
    sv = m.get_SV()
    # print(nsv)
    # print(svc)
    # print(sv)
    
    # def clafun(x):
    #     g = -m.rho[0]
    #     for i in range(0,nsv):
    #         g = g + svc[i][0] * ((0.5 * (x[0]*sv[i][1] + x[1]*sv[i][2]))**3)
    #     return g

    g1 = -m.rho[0]
    b1 = 0
    b2 = 0
    for i in range(0,nsv):
        b1 = b1 + svc[i][0] * 0.5 * sv[i][1]
        b2 = b2 + svc[i][0] * 0.5 * sv[i][2]
        g1 = g1 + svc[i][0]*1
    # print(a1)
    # print(a2)
    # print(g)

    def h(x,y):
        g = -m.rho[0]
        for i in range(0,nsv):
            g = g + svc[i][0] * (0.5*(x*sv[i][1]+y*sv[i][2])+1)
        return g
    x = np.linspace(-10,10,100)
    y = np.linspace(-10,10,100)
    
    X,Y = np.meshgrid(x,y)#将x,y指传入网格中
    # plt.contourf(X,Y,f(X,Y),8,alpha=0.75,cmap=plt.cm.hot)#8指图中的8+1根线,绘制等温线,其中cmap指颜色
    
    C = plt.contour(X,Y,f(X,Y),[0])#colors指等高线颜色
    plt.clabel(C,inline=True,fontsize=10)#inline=True指字体在等高线中
    D = plt.contour(X,Y,h(X,Y),[0])#colors指等高线颜色
    plt.clabel(D,inline=True,fontsize=10)#inline=True指字体在等高线中
    
    plt.xticks(())
    plt.yticks(())
    plt.show()
示例#5
0
def case(y0, t_tuple, stepsize, maxorder, modelist, event, ep, method):
    # print('Simulating')
    t_list, y_list = simulation_ode_2(modelist, event, y0, t_tuple, stepsize)
    draw2D(y_list)

    if method == "new":
        # print('Classifying')
        A, b, Y = diff_method_new(t_list, y_list, maxorder, stepsize)
        P, G, D = infer_dynamic_modes_new(t_list, y_list, stepsize, maxorder,
                                          ep)
        P, G = reclass(A, b, P, ep)
        print(G)
        P, D = dropclass(P, G, D, A, b, Y, ep, stepsize)
        # print('Number of modes:', len(P))

        y = []
        x = []

        for j in range(0, len(P[0])):
            y.append(1)
            x.append({1: Y[P[0][j], 0], 2: Y[P[0][j], 1]})

        for j in range(0, len(P[1])):
            y.append(-1)
            x.append({1: Y[P[1][j], 0], 2: Y[P[1][j], 1]})

        prob = svm_problem(y, x)
        param = svm_parameter('-t 1 -d 1 -c 10 -r 1 -b 0 -q')
        m = svm_train(prob, param)
        svm_save_model('model_file', m)
        nsv = m.get_nr_sv()
        svc = m.get_sv_coef()
        sv = m.get_SV()
        g = -m.rho[0]
        a1 = 0
        a2 = 0
        for i in range(0, nsv):
            a1 = a1 + svc[i][0] * 0.5 * sv[i][1]
            a2 = a2 + svc[i][0] * 0.5 * sv[i][2]
            g = g + svc[i][0]

        def f(x):
            return a1 * x[0] + a2 * x[1] + g > 0

        print(a1 / a1, a2 / a1, g / a1)

    sum = 0
    num = 0

    @eventAttr()
    def eventtest(t, y):
        y0, y1 = y
        return a1 * y0 + a2 * y1 + g

    ttest_list, ytest_list = simulation_ode_2(
        [ode_test(G[0], maxorder),
         ode_test(G[1], maxorder)], eventtest, y0, t_tuple, stepsize)
    for i, temp_y in enumerate(y_list):
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        if i == 0:
            plt.plot(y0_list, y1_list, c='b', label='Original')
        else:
            plt.plot(y0_list, y1_list, c='b')
    for i, temp_y in enumerate(ytest_list):
        y0_list = temp_y.T[0]
        y1_list = temp_y.T[1]
        if i == 0:
            plt.plot(y0_list, y1_list, c='r', label='Inferred')
        else:
            plt.plot(y0_list, y1_list, c='r')
    plt.xlabel('x1')
    plt.ylabel('x2')
    plt.legend()
    plt.show()

    def get_poly_pt(x):
        gene = generate_complete_polynomial(len(x), maxorder)
        val = []
        for i in range(gene.shape[0]):
            val.append(1.0)
            for j in range(gene.shape[1]):
                val[i] = val[i] * (x[j]**gene[i, j])
        poly_pt = np.mat(val)
        return poly_pt

    for ypoints in y_list:
        num = num + ypoints.shape[0]
        for i in range(ypoints.shape[0]):
            if event(0, ypoints[i]) > 0:
                exact = modelist[0](0, ypoints[i])
            else:
                exact = modelist[1](0, ypoints[i])
            if f(ypoints[i]) == 1:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[0].T)
            else:
                predict = np.matmul(get_poly_pt(ypoints[i]), G[1].T)

            exact = np.mat(exact)
            diff = exact - predict
            c = 0
            a = 0
            b = 0
            for j in range(diff.shape[1]):
                c = c + diff[0, j]**2
                a = a + exact[0, j]**2
                b = b + predict[0, j]**2
            f1 = np.sqrt(c)
            f2 = np.sqrt(a) + np.sqrt(b)
            sum = sum + f1 / f2

    return sum / num