示例#1
0
文件: lesserdict.py 项目: aag147/rcnn
for i in range(1):
    bboxes1, target_labels, target_deltas = filters_detection.reduceData(
        Y_tmp, cfg)
    bboxes2 = np.copy(bboxes1)
    bboxes2 = filters_detection.prepareInputs(bboxes2, imageDims, imageMeta)

import draw
import filters_detection

img = np.copy(X[0])
img += cfg.PIXEL_MEANS
img = img.astype(np.uint8)
bboxes2 = filters_detection.unprepareInputs(bboxes2, imageDims)

draw.drawOverlapAnchors(img, bboxes2[0], imageMeta, imageDims, cfg)
draw.drawGTBoxes(img, imageMeta, imageDims)

if False:
    redux = {}
    imageID = '487566'
    redux[imageID] = genTrain.imagesInputs[imageID]

    i = 0
    goal = 5000

    for imageID, inputMeta in genTrain.imagesInputs.items():
        redux[imageID] = inputMeta
        utils.update_progress_new(i + 1, goal, imageID)

        if i == goal:
            break
示例#2
0
genVal = DataGenerator(imagesMeta = data.valGTMeta, cfg=cfg, data_type='val').begin()
X, [Y1,Y2], imageMeta, imageDims = next(genVal)

# filter
X = X[0]
rpn_props = Y1[:,:,:,9:]
rpn_deltas = Y2[:,:,:,36:]

# post preprocessing
pred_anchors = helper.deltas2Anchors(rpn_props, rpn_deltas, cfg, imageDims)
pred_anchors = helper.non_max_suppression_fast(pred_anchors, overlap_thresh=cfg.detection_nms_overlap_thresh)
pred_anchors = pred_anchors[:, 0: -1]

# get inputs and targets
rois, true_labels, true_boxes, IouS = filters_detection.prepareTargets(pred_anchors, imageMeta, imageDims, class_mapping, cfg)
norm_rois = filters_detection.prepareInputs(rois, imageDims)

# reduce and filter
samples = helper.reduce_rois(true_labels, cfg)
rois = rois[samples, :]
norm_rois = norm_rois[:, samples, :]
det_props = true_labels[:, samples, :]
det_deltas = true_boxes[:, samples, 320:]

# post preprocessing
pred_boxes = helper.deltas2Boxes(det_props, det_deltas, rois, cfg)
#pred_boxes = helper.non_max_suppression_boxes(pred_boxes, cfg)
import draw
anchors = draw.drawPositiveRois(X, pred_boxes)
bboxes = draw.drawGTBoxes(X, imageMeta, imageDims)