示例#1
0
文件: viz.py 项目: obaiga/hotspotter
def draw():
    df2.adjust_subplots_safe()
    df2.draw()
示例#2
0
def get_kp_border(rchip, kp):
    np.set_printoptions(precision=8)

    df2.reset()
    df2.figure(9003, docla=True, doclf=True)

    def _plotpts(data, px, color=df2.BLUE, label=''):
        #df2.figure(9003, docla=True, pnum=(1, 1, px))
        df2.plot2(data.T[0], data.T[1], '-', '', color=color, label=label)
        df2.update()

    def _plotarrow(x, y, dx, dy, color=df2.BLUE, label=''):
        ax = df2.gca()
        arrowargs = dict(head_width=.5, length_includes_head=True, label='')
        arrow = df2.FancyArrow(x, y, dx, dy, **arrowargs)
        arrow.set_edgecolor(color)
        arrow.set_facecolor(color)
        ax.add_patch(arrow)
        df2.update()

    def _2x2_eig(M2x2):
        (evals, evecs) = np.linalg.eig(M2x2)
        l1, l2 = evals
        v1, v2 = evecs
        return l1, l2, v1, v2

    #-----------------------
    # INPUT
    #-----------------------
    # We are given the keypoint in invA format
    (x, y, ia11, ia21, ia22), ia12 = kp, 0

    # invA2x2 is a transformation from points on a unit circle to the ellipse
    invA2x2 = np.array([[ia11, ia12], [ia21, ia22]])

    #-----------------------
    # DRAWING
    #-----------------------
    # Lets start off by drawing the ellipse that we are goign to work with
    # Create unit circle sample
    tau = 2 * np.pi
    theta_list = np.linspace(0, tau, 1000)
    cicrle_pts = np.array([(np.cos(t), np.sin(t)) for t in theta_list])
    ellipse_pts = invA2x2.dot(cicrle_pts.T).T
    _plotpts(ellipse_pts, 0, df2.BLACK, label='invA2x2.dot(unit_circle)')
    l1, l2, v1, v2 = _2x2_eig(invA2x2)
    dx1, dy1 = (v1 * l1)
    dx2, dy2 = (v2 * l2)
    _plotarrow(0, 0, dx1, dy1, color=df2.ORANGE, label='invA2x2 e1')
    _plotarrow(0, 0, dx2, dy2, color=df2.RED, label='invA2x2 e2')

    #-----------------------
    # REPRESENTATION
    #-----------------------
    # A2x2 is a transformation from points on the ellipse to a unit circle
    A2x2 = np.linalg.inv(invA2x2)

    # Points on a matrix satisfy (x).T.dot(E2x2).dot(x) = 1
    E2x2 = A2x2.T.dot(A2x2)

    #Lets check our assertion: (x).T.dot(E2x2).dot(x) = 1
    checks = [pt.T.dot(E2x2).dot(pt) for pt in ellipse_pts]
    assert all([abs(1 - check) < 1E-11 for check in checks])

    #-----------------------
    # CONIC SECTIONS
    #-----------------------
    # All of this was from the Perdoch paper, now lets move into conic sections
    # We will use the notation from wikipedia
    # http://en.wikipedia.org/wiki/Conic_section
    # http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections

    # The matrix representation of a conic is:
    ((A, B, B_, C), (D, E, F)) = (E2x2.flatten(), (0, 0, 1))
    assert B == B_, 'matrix should by symmetric'

    # A_Q is our conic section (aka ellipse matrix)
    A_Q = np.array(((A, B / 2, D / 2), (B / 2, C, E / 2), (D / 2, E / 2, F)))

    assert np.linalg.det(A_Q) != 0, 'degenerate conic'
    # As long as det(A_Q) is not 0 it is not degenerate and we can work with the
    # minor 2x2 matrix

    A_33 = np.array(((A, B / 2), (B / 2, C)))

    # (det == 0)->parabola, (det < 0)->hyperbola, (det > 0)->ellipse
    assert np.linalg.det(A_33) > 0, 'conic is not an ellipse'

    # Centers are obtained by solving for where the gradient of the quadratic
    # becomes 0. Without going through the derivation the calculation is...
    # These should be 0, 0 if we are at the origin, or our original x, y
    # coordinate specified by the keypoints. I'm doing the calculation just for
    # shits and giggles
    x_center = (B * E - (2 * C * D)) / (4 * A * C - B**2)
    y_center = (D * B - (2 * A * E)) / (4 * A * C - B**2)

    #=================
    # DRAWING
    #=================
    # Now we are going to determine the major and minor axis
    # of this beast. It just the center augmented by the eigenvecs
    l1, l2, v1, v2 = _2x2_eig(A_33)
    dx1, dy1 = 0 - (v1 / np.sqrt(l1))
    dx2, dy2 = 0 - (v2 / np.sqrt(l2))
    _plotarrow(0, 0, dx1, dy1, color=df2.BLUE)
    _plotarrow(0, 0, dx2, dy2, color=df2.BLUE)

    # The angle between the major axis and our x axis is:
    x_axis = np.array([1, 0])
    theta = np.arccos(x_axis.dot(evec1))

    # The eccentricity is determined by:
    nu = 1
    numer = 2 * np.sqrt((A - C)**2 + B**2)
    denom = nu * (A + C) + np.sqrt((A - C)**2 + B**2)
    eccentricity = np.sqrt(numer / denom)

    from scipy.special import ellipeinc

    # Algebraic form of connic
    #assert (a * (x ** 2)) + (b * (x * y)) + (c * (y ** 2)) + (d * x) + (e * y) + (f) == 0

    #---------------------

    invA = np.array([[a, 0], [c, d]])

    Ashape = np.linalg.inv(np.array([[a, 0], [c, d]]))
    Ashape /= np.sqrt(np.linalg.det(Ashape))

    tau = 2 * np.pi
    nSamples = 100
    theta_list = np.linspace(0, tau, nSamples)

    # Create unit circle sample
    cicrle_pts = np.array([(np.cos(t), np.sin(t)) for t in theta_list])
    circle_hpts = np.hstack([cicrle_pts, np.ones((len(cicrle_pts), 1))])

    # Transform as if the unit cirle was the warped patch
    ashape_pts = Ashape.dot(cicrle_pts.T).T

    inv = np.linalg.inv
    svd = np.linalg.svd
    U, S_, V = svd(Ashape)
    S = np.diag(S_)
    pxl_list3 = invA.dot(cicrle_pts[:, 0:2].T).T
    pxl_list4 = invA.dot(ashape_pts[:, 0:2].T).T
    pxl_list5 = invA.T.dot(cicrle_pts[:, 0:2].T).T
    pxl_list6 = invA.T.dot(ashape_pts[:, 0:2].T).T
    pxl_list7 = inv(V).dot(ashape_pts[:, 0:2].T).T
    pxl_list8 = inv(U).dot(ashape_pts[:, 0:2].T).T
    df2.draw()

    def _plot(data, px, title=''):
        df2.figure(9003, docla=True, pnum=(2, 4, px))
        df2.plot2(data.T[0], data.T[1], '.', title)

    df2.figure(9003, doclf=True)
    _plot(cicrle_pts, 1, 'unit circle')
    _plot(ashape_pts, 2, 'A => circle shape')
    _plot(pxl_list3, 3)
    _plot(pxl_list4, 4)
    _plot(pxl_list5, 5)
    _plot(pxl_list6, 6)
    _plot(pxl_list7, 7)
    _plot(pxl_list8, 8)
    df2.draw()

    invA = np.array([[a, 0, x], [c, d, y], [0, 0, 1]])

    pxl_list = invA.dot(circle_hpts.T).T[:, 0:2]

    df2.figure(9002, doclf=True)
    df2.imshow(rchip)
    df2.plot2(pxl_list.T[0], pxl_list.T[1], '.')
    df2.draw()

    vals = [cv2.getRectSubPix(rchip, (1, 1), tuple(pxl)) for pxl in pxl_list]
    return vals
示例#3
0
def draw():
    df2.adjust_subplots_safe()
    df2.draw()
示例#4
0
def get_kp_border(rchip, kp):
    np.set_printoptions(precision=8)

    df2.reset()
    df2.figure(9003, docla=True, doclf=True)

    def _plotpts(data, px, color=df2.BLUE, label=''):
        #df2.figure(9003, docla=True, pnum=(1, 1, px))
        df2.plot2(data.T[0], data.T[1], '-', '', color=color, label=label)
        df2.update()

    def _plotarrow(x, y, dx, dy, color=df2.BLUE, label=''):
        ax = df2.gca()
        arrowargs = dict(head_width=.5, length_includes_head=True, label='')
        arrow = df2.FancyArrow(x, y, dx, dy, **arrowargs)
        arrow.set_edgecolor(color)
        arrow.set_facecolor(color)
        ax.add_patch(arrow)
        df2.update()

    def _2x2_eig(M2x2):
        (evals, evecs) = np.linalg.eig(M2x2)
        l1, l2 = evals
        v1, v2 = evecs
        return l1, l2, v1, v2

    #-----------------------
    # INPUT
    #-----------------------
    # We are given the keypoint in invA format
    (x, y, ia11, ia21, ia22), ia12 = kp, 0

    # invA2x2 is a transformation from points on a unit circle to the ellipse
    invA2x2 = np.array([[ia11, ia12],
                        [ia21, ia22]])

    #-----------------------
    # DRAWING
    #-----------------------
    # Lets start off by drawing the ellipse that we are goign to work with
    # Create unit circle sample
    tau = 2 * np.pi
    theta_list = np.linspace(0, tau, 1000)
    cicrle_pts = np.array([(np.cos(t), np.sin(t)) for t in theta_list])
    ellipse_pts = invA2x2.dot(cicrle_pts.T).T
    _plotpts(ellipse_pts, 0, df2.BLACK, label='invA2x2.dot(unit_circle)')
    l1, l2, v1, v2 = _2x2_eig(invA2x2)
    dx1, dy1 = (v1 * l1)
    dx2, dy2 = (v2 * l2)
    _plotarrow(0, 0, dx1, dy1, color=df2.ORANGE, label='invA2x2 e1')
    _plotarrow(0, 0, dx2, dy2, color=df2.RED, label='invA2x2 e2')

    #-----------------------
    # REPRESENTATION
    #-----------------------
    # A2x2 is a transformation from points on the ellipse to a unit circle
    A2x2 = np.linalg.inv(invA2x2)

    # Points on a matrix satisfy (x).T.dot(E2x2).dot(x) = 1
    E2x2 = A2x2.T.dot(A2x2)

    #Lets check our assertion: (x).T.dot(E2x2).dot(x) = 1
    checks = [pt.T.dot(E2x2).dot(pt) for pt in ellipse_pts]
    assert all([abs(1 - check) < 1E-11 for check in checks])

    #-----------------------
    # CONIC SECTIONS
    #-----------------------
    # All of this was from the Perdoch paper, now lets move into conic sections
    # We will use the notation from wikipedia
    # http://en.wikipedia.org/wiki/Conic_section
    # http://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections

    # The matrix representation of a conic is:
    ((A,  B, B_, C), (D, E, F)) = (E2x2.flatten(), (0, 0, 1))
    assert B == B_, 'matrix should by symmetric'

    # A_Q is our conic section (aka ellipse matrix)
    A_Q = np.array(((    A, B / 2, D / 2),
                    (B / 2,     C, E / 2),
                    (D / 2, E / 2,     F)))

    assert np.linalg.det(A_Q) != 0, 'degenerate conic'
    # As long as det(A_Q) is not 0 it is not degenerate and we can work with the
    # minor 2x2 matrix

    A_33 = np.array(((    A, B / 2),
                     (B / 2,     C)))

    # (det == 0)->parabola, (det < 0)->hyperbola, (det > 0)->ellipse
    assert np.linalg.det(A_33) > 0, 'conic is not an ellipse'

    # Centers are obtained by solving for where the gradient of the quadratic
    # becomes 0. Without going through the derivation the calculation is...
    # These should be 0, 0 if we are at the origin, or our original x, y
    # coordinate specified by the keypoints. I'm doing the calculation just for
    # shits and giggles
    x_center = (B * E - (2 * C * D)) / (4 * A * C - B ** 2)
    y_center = (D * B - (2 * A * E)) / (4 * A * C - B ** 2)

    #=================
    # DRAWING
    #=================
    # Now we are going to determine the major and minor axis
    # of this beast. It just the center augmented by the eigenvecs
    l1, l2, v1, v2 = _2x2_eig(A_33)
    dx1, dy1 = 0 - (v1 / np.sqrt(l1))
    dx2, dy2 = 0 - (v2 / np.sqrt(l2))
    _plotarrow(0, 0, dx1, dy1, color=df2.BLUE)
    _plotarrow(0, 0, dx2, dy2, color=df2.BLUE)

    # The angle between the major axis and our x axis is:
    x_axis = np.array([1, 0])
    theta = np.arccos(x_axis.dot(evec1))


    # The eccentricity is determined by:
    nu = 1
    numer  = 2 * np.sqrt((A - C) ** 2 + B ** 2)
    denom  = nu * (A + C) + np.sqrt((A - C) ** 2 + B ** 2)
    eccentricity = np.sqrt(numer / denom)



    from scipy.special import ellipeinc


    # Algebraic form of connic
    #assert (a * (x ** 2)) + (b * (x * y)) + (c * (y ** 2)) + (d * x) + (e * y) + (f) == 0




    #---------------------

    invA = np.array([[a, 0],
                     [c, d]])

    Ashape = np.linalg.inv(np.array([[a, 0],
                                     [c, d]]))
    Ashape /= np.sqrt(np.linalg.det(Ashape))

    tau = 2 * np.pi
    nSamples = 100
    theta_list = np.linspace(0, tau, nSamples)

    # Create unit circle sample
    cicrle_pts  = np.array([(np.cos(t), np.sin(t)) for t in theta_list])
    circle_hpts = np.hstack([cicrle_pts, np.ones((len(cicrle_pts), 1))])

    # Transform as if the unit cirle was the warped patch
    ashape_pts = Ashape.dot(cicrle_pts.T).T

    inv = np.linalg.inv
    svd = np.linalg.svd
    U, S_, V = svd(Ashape)
    S = np.diag(S_)
    pxl_list3 = invA.dot(cicrle_pts[:, 0:2].T).T
    pxl_list4 = invA.dot(ashape_pts[:, 0:2].T).T
    pxl_list5 = invA.T.dot(cicrle_pts[:, 0:2].T).T
    pxl_list6 = invA.T.dot(ashape_pts[:, 0:2].T).T
    pxl_list7 = inv(V).dot(ashape_pts[:, 0:2].T).T
    pxl_list8 = inv(U).dot(ashape_pts[:, 0:2].T).T
    df2.draw()


    def _plot(data, px, title=''):
        df2.figure(9003, docla=True, pnum=(2, 4, px))
        df2.plot2(data.T[0], data.T[1], '.', title)

    df2.figure(9003, doclf=True)
    _plot(cicrle_pts, 1, 'unit circle')
    _plot(ashape_pts, 2, 'A => circle shape')
    _plot(pxl_list3, 3)
    _plot(pxl_list4, 4)
    _plot(pxl_list5, 5)
    _plot(pxl_list6, 6)
    _plot(pxl_list7, 7)
    _plot(pxl_list8, 8)
    df2.draw()


    invA = np.array([[a, 0, x],
                     [c, d, y],
                     [0, 0, 1]])

    pxl_list = invA.dot(circle_hpts.T).T[:, 0:2]

    df2.figure(9002, doclf=True)
    df2.imshow(rchip)
    df2.plot2(pxl_list.T[0], pxl_list.T[1], '.')
    df2.draw()

    vals = [cv2.getRectSubPix(rchip, (1, 1), tuple(pxl)) for pxl in pxl_list]
    return vals