def act(self, gs: GameState) -> int: gs_unique_id = gs.get_unique_id() available_actions = gs.get_available_actions(gs.get_active_player()) state_vec = gs.get_vectorized_state() mask_vec = np.zeros((self.action_space_size, )) mask_vec[available_actions] = 1.0 v = self.critic.predict(state_vec) p = self.actor.predict(state_vec, mask_vec) p = np.array(p) p /= p.sum() indexes = np.arange(self.action_space_size) chosen_action = np.random.choice(indexes, p=p) # valid_actions_probability = p[available_actions] # valid_actions_probability_sum = np.sum(valid_actions_probability) # normalized_valid_action_probability = valid_actions_probability / valid_actions_probability_sum # # # chosen_action = np.random.choice(available_actions, p=normalized_valid_action_probability) self.v.append(v) self.s.append(state_vec) self.m.append(mask_vec) self.a.append(to_categorical(chosen_action, self.action_space_size)) if not self.is_last_episode_terminal: self.r.append(self.r_temp) self.r_temp = 0.0 self.is_last_episode_terminal = False return chosen_action
def act(self, gs: GameState) -> int: available_actions = gs.get_available_actions(gs.get_active_player()) state_vec = gs.get_vectorized_state( mode="2D" if self.using_convolution else None) predicted_Q_values = self.Q.predict(state_vec) if np.random.random() <= self.epsilon: chosen_action = np.random.choice(available_actions) else: chosen_action = available_actions[int( np.argmax(predicted_Q_values[available_actions]))] if self.s is not None: target = self.r + self.gamma * max( predicted_Q_values[available_actions]) self.Q.train(self.s, self.a, target) self.s = state_vec self.a = to_categorical(chosen_action, self.action_space_size) self.r = 0.0 return chosen_action
def act(self, gs: GameState) -> int: root_hash = gs.get_unique_id() memory = self.memory if self.keep_memory else dict() if root_hash not in memory: q_values = self.brain.predict(gs.get_vectorized_state()) HalfAlphaZeroAgent.create_node_in_memory( memory, root_hash, gs.get_available_actions(gs.get_active_player()), gs.get_active_player(), q_values, ) for i in range(self.max_iteration): gs_copy = gs.clone() s = gs_copy.get_unique_id() history = [] # SELECTION while not gs_copy.is_game_over() and all( (edge["n"] > 0 for edge in memory[s])): chosen_edge = max( ((edge, HalfAlphaZeroAgent.ucb_1(edge)) for edge in memory[s]), key=lambda kv: kv[1], )[0] history.append((s, chosen_edge)) gs_copy.step(gs_copy.get_active_player(), chosen_edge["a"]) s = gs_copy.get_unique_id() if s not in memory: q_values = self.brain.predict( gs_copy.get_vectorized_state()) HalfAlphaZeroAgent.create_node_in_memory( memory, s, gs_copy.get_available_actions( gs_copy.get_active_player()), gs_copy.get_active_player(), q_values, ) # EXPANSION if not gs_copy.is_game_over(): chosen_edge = choice( list( filter(lambda e: e["n"] == 0, (edge for edge in memory[s])))) history.append((s, chosen_edge)) gs_copy.step(gs_copy.get_active_player(), chosen_edge["a"]) s = gs_copy.get_unique_id() if s not in memory: q_values = self.brain.predict( gs_copy.get_vectorized_state()) HalfAlphaZeroAgent.create_node_in_memory( memory, s, gs_copy.get_available_actions( gs_copy.get_active_player()), gs_copy.get_active_player(), q_values, ) scores = np.zeros(gs_copy.player_count()) scores_set = np.zeros(gs_copy.player_count()) # REMONTEE DU SCORE for (s, edge) in history: if scores_set[edge["p"]] == 0: scores_set[edge["p"]] = 1.0 scores[edge["p"]] = edge["q"] edge["n"] += 1 edge["r"] += scores[edge["p"]] for neighbour_edge in memory[s]: neighbour_edge["np"] += 1 chosen_action = max((edge for edge in memory[root_hash]), key=lambda e: e["n"])["a"] if len(self.states_buffer) > 0: self.rewards_buffer.append(self.intermediate_reward) self.states_buffer.append(gs.get_vectorized_state()) self.actions_buffer.append( to_categorical(chosen_action, gs.get_action_space_size())) self.intermediate_reward = 0.0 return chosen_action
def act(self, gs: GameState) -> int: if self.apprentice_training_count > self.apprentice_training_before_takeover: return gs.get_available_actions(gs.get_active_player())[ np.argmax( self.brain.predict(np.array([gs.get_vectorized_state()]))[0][ gs.get_available_actions(gs.get_active_player()) ] ) ] root_hash = gs.get_unique_id() memory = self.memory if self.keep_memory else dict() if root_hash not in memory: ExpertApprenticeAgent.create_node_in_memory( memory, root_hash, gs.get_available_actions(gs.get_active_player()), gs.get_active_player(), ) for i in range(self.max_iteration): gs_copy = gs.clone() s = gs_copy.get_unique_id() history = [] # SELECTION while not gs_copy.is_game_over() and all( (edge["n"] > 0 for edge in memory[s]) ): chosen_edge = max( ((edge, ExpertApprenticeAgent.ucb_1(edge)) for edge in memory[s]), key=lambda kv: kv[1], )[0] history.append((s, chosen_edge)) gs_copy.step(gs_copy.get_active_player(), chosen_edge["a"]) s = gs_copy.get_unique_id() if s not in memory: ExpertApprenticeAgent.create_node_in_memory( memory, s, gs_copy.get_available_actions(gs_copy.get_active_player()), gs_copy.get_active_player(), ) # EXPANSION if not gs_copy.is_game_over(): chosen_edge = choice( list(filter(lambda e: e["n"] == 0, (edge for edge in memory[s]))) ) history.append((s, chosen_edge)) gs_copy.step(gs_copy.get_active_player(), chosen_edge["a"]) s = gs_copy.get_unique_id() if s not in memory: ExpertApprenticeAgent.create_node_in_memory( memory, s, gs_copy.get_available_actions(gs_copy.get_active_player()), gs_copy.get_active_player(), ) # SIMULATION while not gs_copy.is_game_over(): gs_copy.step( gs_copy.get_active_player(), choice(gs_copy.get_available_actions(gs_copy.get_active_player())), ) scores = gs_copy.get_scores() # REMONTEE DU SCORE for (s, edge) in history: edge["n"] += 1 edge["r"] += scores[edge["p"]] for neighbour_edge in memory[s]: neighbour_edge["np"] += 1 target = np.zeros(gs.get_action_space_size()) for edge in memory[root_hash]: target[edge["a"]] = edge["n"] target /= np.sum(target) self.states_buffer.append(gs.get_vectorized_state()) self.actions_buffer.append(target) if len(self.states_buffer) > 200: self.apprentice_training_count += 1 self.brain.fit( np.array(self.states_buffer), np.array(self.actions_buffer), verbose=0 ) self.states_buffer.clear() self.actions_buffer.clear() if self.apprentice_training_count > self.apprentice_training_before_takeover: print("Apprentice is playing next round") return max((edge for edge in memory[root_hash]), key=lambda e: e["n"])["a"]