示例#1
0
    def test_exec_with_ordered_set(self):
        '''
        Tests a single function execution with an ordered set input as an
        argument to validate that ordered sets are correctly handled.
        '''
        def func(_, x):
            return len(x) >= 2 and x[0] < x[1]

        fname = 'set_order'
        arg_value = [2, 3]
        arg_name = 'set'

        self.kvs_client.put(arg_name, serializer.dump_lattice(arg_value))

        # Put the function into the KVS and create a function call.
        create_function(func, self.kvs_client, fname)
        call = self._create_function_call(fname,
                                          [DropletReference(arg_name, True)],
                                          NORMAL)
        self.socket.inbox.append(call.SerializeToString())

        # Execute the function call.
        exec_function(self.socket, self.kvs_client, self.user_library, {})

        # Assert that there have been 0 messages sent.
        self.assertEqual(len(self.socket.outbox), 0)

        # Retrieve the result, ensure it is a LWWPairLattice, then deserialize
        # it.
        result = self.kvs_client.get(self.response_key)[self.response_key]
        self.assertEqual(type(result), LWWPairLattice)
        result = serializer.load_lattice(result)

        # Check that the output is equal to a local function execution.
        self.assertEqual(result, func('', arg_value))
示例#2
0
    def test_call_function_with_refs(self):
        '''
        Creates a scenario where the policy should deterministically pick the
        same executor to run a request on: There is one reference, and it's
        cached only on the node we create in this test.
        '''
        # Add a new executor for which we will construct cached references.
        ip_address = '192.168.0.1'
        new_key = (ip_address, 2)
        self.policy.unpinned_executors.add(new_key)

        # Create a new reference and add its metadata.
        ref_name = 'reference'
        self.policy.key_locations[ref_name] = [ip_address]

        # Create a function call that asks for this reference.
        call = FunctionCall()
        call.name = 'function'
        call.request_id = 12
        val = call.arguments.values.add()
        serializer.dump(DropletReference(ref_name, True), val)
        self.socket.inbox.append(call.SerializeToString(0))

        # Execute the scheduling policy.
        call_function(self.socket, self.pusher_cache, self.policy)

        # Check that the correct number of messages were sent.
        self.assertEqual(len(self.socket.outbox), 1)
        self.assertEqual(len(self.pusher_cache.socket.outbox), 1)

        # Extract and deserialize the messages.
        response = GenericResponse()
        forwarded = FunctionCall()
        response.ParseFromString(self.socket.outbox[0])
        forwarded.ParseFromString(self.pusher_cache.socket.outbox[0])

        self.assertTrue(response.success)
        self.assertEqual(response.response_id, forwarded.response_key)
        self.assertEqual(forwarded.name, call.name)
        self.assertEqual(forwarded.request_id, call.request_id)

        # Makes sure that the correct executor was chosen.
        self.assertEqual(len(self.pusher_cache.addresses), 1)
        self.assertEqual(self.pusher_cache.addresses[0],
                         utils.get_exec_address(*new_key))
示例#3
0
    def test_exec_func_with_causal_ref(self):
        '''
        Tests a function execution where the argument is a reference to the
        KVS in causal mode. Ensures that the result has the correct causal
        dependencies and metadata.
        '''

        # Create the function and serialize it into a lattice.
        def func(_, x):
            return x * x

        fname = 'square'
        create_function(func, self.kvs_client, fname, SingleKeyCausalLattice)

        # Put an argument value into the KVS.
        arg_value = 2
        arg_name = 'key'
        self.kvs_client.put(
            arg_name, serializer.dump_lattice(arg_value,
                                              MultiKeyCausalLattice))

        # Create and serialize the function call.
        call = self._create_function_call(fname,
                                          [DropletReference(arg_name, True)],
                                          MULTI)
        self.socket.inbox.append(call.SerializeToString())

        # Execute the function call.
        exec_function(self.socket, self.kvs_client, self.user_library, {})

        # Assert that there have been 0 messages sent.
        self.assertEqual(len(self.socket.outbox), 0)

        # Retrieve the result, ensure it is a MultiKeyCausalLattice, then
        # deserialize it.
        result = self.kvs_client.get(self.response_key)[self.response_key]
        self.assertEqual(type(result), MultiKeyCausalLattice)
        self.assertEqual(result.vector_clock, DEFAULT_VC)
        self.assertEqual(len(result.dependencies.reveal()), 1)
        self.assertTrue(arg_name in result.dependencies.reveal())
        self.assertEqual(result.dependencies.reveal()[arg_name], DEFAULT_VC)
        result = serializer.load_lattice(result)[0]

        # Check that the output is equal to a local function execution.
        self.assertEqual(result, func('', arg_value))
示例#4
0
    def dump(self, data, valobj=None, serialize=True):
        if not valobj:
            valobj = Value()

        # If we are attempting to pass a future into another function, we
        # simply turn it into a reference because the runtime knows how to
        # automatically resolve it.
        if isinstance(data, future.DropletFuture):
            valobj.body = self._dump_default(
                DropletReference(data.obj_id, True))
            valobj.type = DEFAULT
        elif isinstance(data, np.ndarray):
            valobj.body = self._dump_numpy(data)
            valobj.type = NUMPY
        else:
            valobj.body = self._dump_default(data)
            valobj.type = DEFAULT

        if not serialize:
            return valobj

        return valobj.SerializeToString()
示例#5
0
    def test_exec_func_with_ref(self):
        '''
        Tests a function execution where the argument is a reference to the
        KVS in normal mode.
        '''

        # Create the function and serialize it into a lattice.
        def func(_, x):
            return x * x

        fname = 'square'
        create_function(func, self.kvs_client, fname)

        # Put an argument value into the KVS.
        arg_value = 2
        arg_name = 'key'
        self.kvs_client.put(arg_name, serializer.dump_lattice(arg_value))

        # Create and serialize the function call.
        call = self._create_function_call(fname,
                                          [DropletReference(arg_name, True)],
                                          NORMAL)
        self.socket.inbox.append(call.SerializeToString())

        # Execute the function call.
        exec_function(self.socket, self.kvs_client, self.user_library, {})

        # Assert that there have been 0 messages sent.
        self.assertEqual(len(self.socket.outbox), 0)

        # Retrieve the result, ensure it is a LWWPairLattice, then deserialize
        # it.
        result = self.kvs_client.get(self.response_key)[self.response_key]
        self.assertEqual(type(result), LWWPairLattice)
        result = serializer.load_lattice(result)

        # Check that the output is equal to a local function execution.
        self.assertEqual(result, func('', arg_value))
示例#6
0
def run(droplet_client, num_requests, sckt):
    '''
    UPLOAD THE MODEL OBJECT
    '''
    model_key = 'mobilenet-model'
    label_key = 'mobilenet-label-map'

    with open('model/label_map.json', 'rb') as f:
        bts = f.read()
        lattice = LWWPairLattice(0, bts)
        droplet_client.kvs_client.put(label_key, lattice)

    with open('model/mobilenet_v2_1.4_224_frozen.pb', 'rb') as f:
        bts = f.read()
        lattice = LWWPairLattice(0, bts)
        droplet_client.kvs_client.put(model_key, lattice)
    ''' DEFINE AND REGISTER FUNCTIONS '''
    def preprocess(droplet, inp):
        from skimage import filters
        return filters.gaussian(inp).reshape(1, 224, 224, 3)

    class Mobilenet:
        def __init__(self, droplet, model_key, label_map_key):
            import tensorflow as tf
            import json

            tf.enable_eager_execution()

            self.model = droplet.get(model_key, deserialize=False)
            self.label_map = json.loads(
                droplet.get(label_map_key, deserialize=False))

            self.gd = tf.GraphDef.FromString(self.model)
            self.inp, self.predictions = tf.import_graph_def(
                self.gd,
                return_elements=[
                    'input:0', 'MobilenetV2/Predictions/Reshape_1:0'
                ])

        def run(self, droplet, img):
            # load libs
            import tensorflow as tf
            from PIL import Image
            from io import BytesIO
            import base64
            import numpy as np
            import json

            tf.enable_eager_execution()

            # load image and model
            # img = np.array(Image.open(BytesIO(base64.b64decode(img))).resize((224, 224))).astype(np.float) / 128 - 1
            with tf.Session(graph=self.inp.graph):
                x = self.predictions.eval(feed_dict={self.inp: img})

            return x

    def average(droplet, inp):
        import numpy as np
        inp = [
            inp,
        ]
        return np.mean(inp, axis=0)

    cloud_prep = droplet_client.register(preprocess, 'preprocess')
    cloud_mnet = droplet_client.register((Mobilenet, (model_key, label_key)),
                                         'mnet')
    cloud_average = droplet_client.register(average, 'average')

    if cloud_prep and cloud_mnet and cloud_average:
        print('Successfully registered preprocess, mnet, and average ' +
              'functions.')
    else:
        sys.exit(1)
    ''' TEST REGISTERED FUNCTIONS '''
    arr = np.random.randn(1, 224, 224, 3)
    prep_test = cloud_prep(arr).get()
    if type(prep_test) != np.ndarray:
        print('Unexpected result from preprocess(arr): %s' % (str(prep_test)))
        sys.exit(1)

    mnet_test = cloud_mnet(prep_test).get()
    if type(mnet_test) != np.ndarray:
        print('Unexpected result from mobilenet(arr): %s' % (str(mnet_test)))
        sys.exit(1)

    average_test = cloud_average(mnet_test).get()
    if type(average_test) != np.ndarray:
        print('Unexpected result from average(arr): %s' % (str(average_test)))
        sys.exit(1)

    print('Successfully tested functions!')
    ''' CREATE DAG '''

    dag_name = 'mnet'

    functions = ['preprocess', 'mnet', 'average']
    connections = [('preprocess', 'mnet'), ('mnet', 'average')]
    success, error = droplet_client.register_dag(dag_name, functions,
                                                 connections)

    if not success:
        print('Failed to register DAG: %s' % (str(error)))
        sys.exit(1)
    ''' RUN DAG '''
    total_time = []

    # Create all the input data
    oids = []
    for _ in range(num_requests):
        arr = np.random.randn(1, 224, 224, 3)
        oid = str(uuid.uuid4())
        oids.append(oid)

        droplet_client.put_object(oid, arr)

    for i in range(num_requests):
        oid = oids[i]

        arg_map = {'preprocess': [DropletReference(oid, True)]}

        start = time.time()
        droplet_client.call_dag(dag_name, arg_map, True)
        end = time.time()

        total_time += [end - start]

    if sckt:
        sckt.send(cp.dumps(total_time))

    return total_time, [], [], 0
示例#7
0
def run(droplet_client, num_requests, sckt):
    ''' DEFINE AND REGISTER FUNCTIONS '''
    def summa(droplet, uid, lblock, rblock, rid, cid, numrows, numcols):
        import cloudpickle as cp

        bsize = lblock.shape[0]
        ssize = 100
        res = np.zeros((bsize, bsize))

        myid = droplet.getid()
        key = '%s: (%d, %d)' % (uid, rid, cid)

        droplet.put(key, myid)

        proc_locs = {}
        keyset = []
        idset = {}
        for i in range(numrows):
            if i == rid:
                continue

            key = '%s: (%d, %d)' % (uid, i, cid)
            keyset.append(key)
            idset[key] = (i, cid)

        for j in range(numcols):
            if j == cid:
                continue

            key = '%s: (%d, %d)' % (uid, rid, j)
            keyset.append(key)
            idset[key] = (rid, j)

        locs = droplet.get(keyset)
        while None in locs.values():
            locs = droplet.get(keyset)

        for key in locs:
            loc = idset[key]
            proc_locs[loc] = locs[key]

        for c in range(numcols):
            if c == cid:
                continue

            for k in range(int(bsize / ssize)):
                dest = proc_locs[(rid, c)]
                send_id = ('l', k + (bsize * cid))

                msg = cp.dumps(
                    (send_id, lblock[:, (k * ssize):((k + 1) * ssize)]))
                droplet.send(dest, msg)

        for r in range(numrows):
            if r == rid:
                continue

            for k in range(int(bsize / ssize)):
                dest = proc_locs[(r, cid)]
                send_id = ('r', k + (bsize * rid))

                msg = cp.dumps(
                    (send_id, rblock[(k * ssize):((k + 1) * ssize), :]))
                droplet.send(dest, msg)

        num_recvs = (((numrows - 1) * bsize) / ssize) * 2
        recv_count = 0
        left_recvs = {}
        right_recvs = {}

        for l in range(int(bsize / ssize)):
            left_recvs[l + (bsize * cid)] = lblock[:, (l * ssize):((l + 1) *
                                                                   ssize)]

        for r in range(int(bsize / ssize)):
            right_recvs[r + (bsize * rid)] = rblock[(r * ssize):((r + 1) *
                                                                 ssize), :]

        while recv_count < num_recvs:
            msgs = droplet.recv()
            recv_count += (len(msgs))

            for msg in msgs:
                _, body = msg
                body = cp.loads(body)

                send_id = body[0]
                if send_id[0] == 'l':
                    col = body[1]
                    key = send_id[1]
                    left_recvs[key] = col

                    if key in right_recvs:
                        match_vec = right_recvs[key]
                        res = np.add(np.matmul(col, match_vec), res)

                        del right_recvs[key]
                        del left_recvs[key]

                if send_id[0] == 'r':
                    row = body[1]
                    key = send_id[1]
                    right_recvs[key] = row

                    if key in left_recvs:
                        match_vec = left_recvs[key]
                        res = np.add(np.matmul(match_vec, row), res)

                        del right_recvs[key]
                        del left_recvs[key]

        for key in left_recvs:
            left = left_recvs[key]
            right = right_recvs[key]
            logging.info(left.shape)
            logging.info(right.shape)

            res = np.add(res, np.matmul(left, right))
        return res

    cloud_summa = droplet_client.register(summa, 'summa')

    if cloud_summa:
        print('Successfully registered summa function.')
    else:
        sys.exit(1)
    ''' TEST REGISTERED FUNCTIONS '''
    n = 10000
    inp1 = np.random.randn(n, n)
    inp2 = np.random.randn(n, n)
    nt = 5
    nr = nt
    nc = nt
    bsize = int(n / nr)

    def get_block(arr, row, col, bsize):
        row_start = row * bsize
        row_end = (row + 1) * bsize
        col_start = col * bsize
        col_end = (col + 1) * bsize

        return arr[row_start:row_end, col_start:col_end]

    latencies = []
    for _ in range(num_requests):
        time.sleep(.1)
        uid = str(uuid.uuid4())
        rids = {}

        left_id_map = {}
        right_id_map = {}
        for r in range(nr):
            for c in range(nc):
                lblock = get_block(inp1, r, c, bsize)
                rblock = get_block(inp2, r, c, bsize)
                id1 = str(uuid.uuid4())
                id2 = str(uuid.uuid4())

                droplet_client.put_object(id1, lblock)
                droplet_client.put_object(id2, rblock)

                left_id_map[(r, c)] = id1
                right_id_map[(r, c)] = id2

        start = time.time()
        for r in range(nr):
            for c in range(nc):
                r1 = DropletReference(left_id_map[(r, c)], True)
                r2 = DropletReference(right_id_map[(r, c)], True)

                rids[(r, c)] = cloud_summa(uid, r1, r2, r, c, nr, nc)
        end = time.time()
        print('Scheduling to %.6f seconds.' % (end - start))

        result = np.zeros((n, n))
        get_times = []
        send_times = []
        comp_times = []
        total_times = []

        for key in rids:
            res = rids[key].get()
            get_times.append(res[1])
            send_times.append(res[2])
            comp_times.append(res[3])
            total_times.append(res[4])

            res = res[0]
            r = key[0]
            c = key[1]
            result[(r * bsize):((r + 1) * bsize),
                   (c * bsize):((c + 1) * bsize)] = res

        end = time.time()
        latencies.append(end - start)

        if False in np.isclose(result, np.matmul(inp1, inp2)):
            print('Failure!')

    return latencies, [], [], 0
示例#8
0
    def test_exec_causal_dag_non_sink_with_ref(self):
        '''
        Creates and executes a non-sink function in a causal-mode DAG. This
        version accesses a KVS key, so we ensure that data is appropriately
        cached and the metadata is passed downstream.
        '''

        # Create two functions intended to be used in sequence.
        def incr(_, x):
            x + 1

        iname = 'incr'

        def square(_, x):
            return x * x

        sname = 'square'

        # Put tthe argument into the KVS.
        arg_name = 'arg'
        arg_value = 1
        arg = serializer.dump_lattice(arg_value, MultiKeyCausalLattice)
        self.kvs_client.put(arg_name, arg)

        # Create a DAG and a trigger for the first function in the DAG.
        dag = create_linear_dag([incr, square], [iname, sname],
                                self.kvs_client, 'dag', MultiKeyCausalLattice)
        schedule, triggers = self._create_fn_schedule(
            dag, DropletReference(arg_name, True), iname, [iname, sname],
            MULTI)

        exec_dag_function(self.pusher_cache, self.kvs_client, triggers, incr,
                          schedule, self.user_library, {}, {})

        # Assert that there has been a message sent.
        self.assertEqual(len(self.pusher_cache.socket.outbox), 1)

        # Extract that message and check its contents.
        trigger = DagTrigger()
        trigger.ParseFromString(self.pusher_cache.socket.outbox[0])
        self.assertEqual(trigger.id, schedule.id)
        self.assertEqual(trigger.target_function, sname)
        self.assertEqual(trigger.source, iname)
        self.assertEqual(len(trigger.arguments.values), 1)

        # Check the metadata of the key that is cached here after execution.
        locs = trigger.version_locations
        self.assertEqual(len(locs), 1)
        self.assertTrue(self.ip in locs.keys())
        self.assertEqual(len(locs[self.ip].keys), 1)
        kv = locs[self.ip].keys[0]
        self.assertEqual(kv.key, arg_name)
        self.assertEqual(VectorClock(dict(kv.vector_clock), True),
                         arg.vector_clock)

        # Check the metatada of the causal dependency passed downstream.
        self.assertEqual(len(trigger.dependencies), 1)
        kv = trigger.dependencies[0]
        self.assertEqual(kv.key, arg_name)
        self.assertEqual(VectorClock(dict(kv.vector_clock), True),
                         arg.vector_clock)

        val = serializer.load(trigger.arguments.values[0])
        self.assertEqual(val, incr('', arg_value))
示例#9
0
def run(droplet_client, num_requests, sckt):
    ''' DEFINE AND REGISTER FUNCTIONS '''
    def preprocess(droplet, inp):
        from skimage import filters
        return filters.gaussian(inp).reshape(1, 3, 224, 224)

    def sqnet(droplet, inp):
        import torch
        import torchvision

        model = torchvision.models.squeezenet1_1()
        return model(torch.tensor(inp.astype(np.float32))).detach().numpy()

    def average(droplet, inp1, inp2, inp3):
        import numpy as np
        inp = [inp1, inp2, inp3]
        return np.mean(inp, axis=0)

    cloud_prep = droplet_client.register(preprocess, 'preprocess')
    cloud_sqnet1 = droplet_client.register(sqnet, 'sqnet1')
    cloud_sqnet2 = droplet_client.register(sqnet, 'sqnet2')
    cloud_sqnet3 = droplet_client.register(sqnet, 'sqnet3')
    cloud_average = droplet_client.register(average, 'average')

    if cloud_prep and cloud_sqnet1 and cloud_sqnet2 and cloud_sqnet3 and \
            cloud_average:
        print('Successfully registered preprocess, sqnet, and average ' +
              'functions.')
    else:
        sys.exit(1)
    ''' TEST REGISTERED FUNCTIONS '''
    arr = np.random.randn(1, 224, 224, 3)
    prep_test = cloud_prep(arr).get()
    if type(prep_test) != np.ndarray:
        print('Unexpected result from preprocess(arr): %s' % (str(prep_test)))
        sys.exit(1)

    sqnet_test1 = cloud_sqnet1(prep_test).get()
    if type(sqnet_test1) != np.ndarray:
        print('Unexpected result from squeezenet1(arr): %s' %
              (str(sqnet_test1)))
        sys.exit(1)

    sqnet_test2 = cloud_sqnet2(prep_test).get()
    if type(sqnet_test2) != np.ndarray:
        print('Unexpected result from squeezenet2(arr): %s' %
              (str(sqnet_test2)))
        sys.exit(1)

    sqnet_test3 = cloud_sqnet3(prep_test).get()
    if type(sqnet_test3) != np.ndarray:
        print('Unexpected result from squeezenet3(arr): %s' %
              (str(sqnet_test3)))
        sys.exit(1)

    average_test = cloud_average(sqnet_test1, sqnet_test2, sqnet_test3).get()
    if type(average_test) != np.ndarray:
        print('Unexpected result from squeezenet(arr): %s' %
              (str(average_test)))
        sys.exit(1)

    print('Successfully tested functions!')
    ''' CREATE DAG '''

    dag_name = 'pred_serving'

    functions = ['preprocess', 'sqnet1', 'sqnet2', 'sqnet3', 'average']
    connections = [('preprocess', 'sqnet1'), ('preprocess', 'sqnet2'),
                   ('preprocess', 'sqnet3'), ('sqnet1', 'average'),
                   ('sqnet2', 'average'), ('sqnet3', 'average')]
    success, error = droplet_client.register_dag(dag_name, functions,
                                                 connections)

    if not success:
        print('Failed to register DAG: %s' % (str(error)))
        sys.exit(1)
    ''' RUN DAG '''
    total_time = []

    # Create all the input data
    oids = []
    for _ in range(num_requests):
        arr = np.random.randn(1, 224, 224, 3)
        oid = str(uuid.uuid4())
        oids.append(oid)

        droplet_client.put(oid, arr)

    for i in range(num_requests):
        oid = oids[i]

        arg_map = {'preprocess': [DropletReference(oid, True)]}

        start = time.time()
        droplet_client.call_dag(dag_name, arg_map, True)
        end = time.time()

        total_time += [end - start]

    if sckt:
        sckt.send(cp.dumps(total_time))

    return total_time, [], [], 0
示例#10
0
def run(droplet_client, num_requests, create, sckt):
    dag_name = 'locality'
    kvs_key = 'LOCALITY_OIDS'

    if create:
        ''' DEFINE AND REGISTER FUNCTIONS '''
        def dot(droplet, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10):
            import numpy as np
            s1 = np.add(v1, v2)
            s2 = np.add(v3, v4)
            s3 = np.add(v5, v6)
            s4 = np.add(v7, v8)
            s5 = np.add(v9, v10)

            s1 = np.add(s1, s2)
            s2 = np.add(s3, s4)

            s1 = np.add(s1, s2)
            s1 = np.add(s1, s5)

            return np.average(s1)

        cloud_dot = droplet_client.register(dot, 'dot')

        if cloud_dot:
            logging.info('Successfully registered the dot function.')
        else:
            sys.exit(1)
        ''' TEST REGISTERED FUNCTIONS '''
        refs = ()
        for _ in range(10):
            inp = np.zeros(OSIZE)
            k = str(uuid.uuid4())
            droplet_client.put_object(k, inp)

            refs += (DropletReference(k, True), )

        dot_test = cloud_dot(*refs).get()
        if dot_test != 0.0:
            print('Unexpected result from dot(v1, v2): %s' % (str(dot_test)))
            sys.exit(1)

        logging.info('Successfully tested function!')
        ''' CREATE DAG '''
        functions = ['dot']
        connections = []
        success, error = droplet_client.register_dag(dag_name, functions,
                                                     connections)
        if not success and error != DAG_ALREADY_EXISTS:
            print('Failed to register DAG: %s' % (DropletError.Name(error)))
            sys.exit(1)

        # for the hot version
        oid = str(uuid.uuid4())
        arr = np.random.randn(OSIZE)
        droplet_client.put_object(oid, arr)
        droplet_client.put_object(kvs_key, [oid])

        return [], [], [], 0

    else:
        ''' RUN DAG '''

        # num_data_objects = num_requests * 10 # for the cold version
        # oids = []
        # for i in range(num_data_objects):
        #     if i % 100 == 0:
        #         logging.info('On object %d.' % (i))

        #     array = np.random.rand(OSIZE)
        #     oid = str(uuid.uuid4())
        #     droplet_client.put_object(oid, array)
        #     oids.append(oid)

        # logging.info('Finished creating data!')

        # for the hot version
        oids = droplet_client.get_object(kvs_key)

        total_time = []
        scheduler_time = []
        kvs_time = []

        retries = 0

        log_start = time.time()

        log_epoch = 0
        epoch_total = []

        for i in range(num_requests):
            refs = []
            # for ref in oids[(i * 10):(i * 10) + 10]: # for the cold version
            #     refs.append(DropletReference(ref, True))
            for _ in range(10):  # for the hot version
                refs.append(DropletReference(oids[0], True))

            start = time.time()
            arg_map = {'dot': refs}

            droplet_client.call_dag(dag_name, arg_map, True)
            end = time.time()

            epoch_total.append(end - start)
            total_time.append(end - start)

            log_end = time.time()
            if (log_end - log_start) > 10:
                if sckt:
                    sckt.send(cp.dumps(epoch_total))
                utils.print_latency_stats(epoch_total,
                                          'EPOCH %d E2E' % (log_epoch), True)

                epoch_total.clear()
                log_epoch += 1
                log_start = time.time()

        return total_time, scheduler_time, kvs_time, retries