示例#1
0
 def test_constructor(self):
     """Tests different valid and invalid constructor values.
     """
     with self.assertRaises(ValueError):
         SineMatrix(n_atoms_max=5, permutation="unknown")
     with self.assertRaises(ValueError):
         SineMatrix(n_atoms_max=-1)
示例#2
0
    def test_features(self):
        """Tests that the correct features are present in the desciptor.
        """
        desc = SineMatrix(n_atoms_max=2, permutation="none", flatten=False)

        # Test that without cell the matrix cannot be calculated
        system = Atoms(
            positions=[[0, 0, 0], [1.0, 1.0, 1.0]],
            symbols=["H", "H"],
        )
        with self.assertRaises(ValueError):
            desc.create(system)

        # Test that periodic boundaries are considered by seeing that an atom
        # in the origin is replicated to the  corners
        system = Atoms(
            cell=[
                [10, 10, 0],
                [0, 10, 0],
                [0, 0, 10],
            ],
            scaled_positions=[[0, 0, 0], [1.0, 1.0, 1.0]],
            symbols=["H", "H"],
            pbc=True,
        )
        # from ase.visualize import view
        # view(system)
        matrix = desc.create(system)

        # The interaction between atoms 1 and 2 should be infinite due to
        # periodic boundaries.
        self.assertEqual(matrix[0, 1], float("Inf"))

        # The interaction of an atom with itself is always 0.5*Z**2.4
        atomic_numbers = system.get_atomic_numbers()
        for i, i_diag in enumerate(np.diag(matrix)):
            self.assertEqual(i_diag, 0.5 * atomic_numbers[i]**2.4)
示例#3
0
    def test_flatten(self):
        """Tests the flattening."""
        # Unflattened
        desc = SineMatrix(n_atoms_max=5, permutation="none", flatten=False)
        cm = desc.create(H2O)
        self.assertEqual(cm.shape, (5, 5))

        # Flattened
        desc = SineMatrix(n_atoms_max=5, permutation="none", flatten=True)
        cm = desc.create(H2O)
        self.assertEqual(cm.shape, (25, ))
示例#4
0
 def test_exceptions(self):
     """Tests different invalid parameters that should raise an
     exception.
     """
     with self.assertRaises(ValueError):
         SineMatrix(n_atoms_max=5, permutation="unknown")
     with self.assertRaises(ValueError):
         SineMatrix(n_atoms_max=-1)
     with self.assertRaises(ValueError):
         sm = SineMatrix(n_atoms_max=2)
         sm.create([HHe, H2O])
示例#5
0
    def test_sparse(self):
        """Tests the sparse matrix creation."""
        # Dense
        desc = SineMatrix(n_atoms_max=5,
                          permutation="none",
                          flatten=True,
                          sparse=False)
        vec = desc.create(H2O)
        self.assertTrue(type(vec) == np.ndarray)

        # Sparse
        desc = SineMatrix(n_atoms_max=5,
                          permutation="none",
                          flatten=True,
                          sparse=True)
        vec = desc.create(H2O)
        self.assertTrue(type(vec) == sparse.COO)
示例#6
0
    def test_unit_cells(self):
        """Tests if arbitrary unit cells are accepted"""
        desc = SineMatrix(n_atoms_max=3, permutation="none", flatten=False)

        molecule = H2O.copy()

        molecule.set_cell([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]])
        with self.assertRaises(ValueError):
            nocell = desc.create(molecule)

        molecule.set_pbc(True)
        molecule.set_cell([[20.0, 0.0, 0.0], [0.0, 30.0, 0.0],
                           [0.0, 0.0, 40.0]])

        largecell = desc.create(molecule)

        molecule.set_cell([[2.0, 0.0, 0.0], [0.0, 2.0, 0.0], [0.0, 0.0, 2.0]])

        cubic_cell = desc.create(molecule)

        molecule.set_cell([[0.0, 2.0, 2.0], [2.0, 0.0, 2.0], [2.0, 2.0, 0.0]])

        triclinic_smallcell = desc.create(molecule)
示例#7
0
"""
from functional.streams import ParallelStream as pseq

from collections import namedtuple

import ase.build.bulk

from dscribe.descriptors import CoulombMatrix
from dscribe.descriptors import SineMatrix
from dscribe.descriptors import EwaldMatrix

# Setup the descriptors
n_atoms_max = 4
n_proc = 4
coulombmatrix = CoulombMatrix(n_atoms_max=n_atoms_max)
sinematrix = SineMatrix(n_atoms_max=n_atoms_max)
ewaldmatrix = EwaldMatrix(n_atoms_max=n_atoms_max)

# Define a dataset
data = {
    "NaCl": ase.build.bulk("NaCl", "rocksalt", 5.64),
    "Diamond": ase.build.bulk("C", "diamond", 3.567),
    "Al": ase.build.bulk("Al", "fcc", 4.046),
    "GaAs": ase.build.bulk("GaAs", "zincblende", 5.653),
}

# Setup an iterable that runs through the samples.
Result = namedtuple("Result", "cm sm em")
Sample = namedtuple("Sample", "key value")
samples = [Sample(key, value) for key, value in data.items()]
示例#8
0
# "https://wiki.fysik.dtu.dk/ase/ase/io/io.html" for a list of supported file
# formats.
atoms = ase.io.read("nacl.xyz")
atoms.set_cell([5.640200, 5.640200, 5.640200])
atoms.set_initial_charges(atoms.get_atomic_numbers())

# There are utilities for automatically detecting statistics for ASE Atoms
# objects. Typically some statistics are needed for the descriptors in order to
# e.g. define a proper zero-padding
stats = system_stats([atoms])
n_atoms_max = stats["n_atoms_max"]
atomic_numbers = stats["atomic_numbers"]

# Create descriptors for this system directly from the ASE atoms
cm = CoulombMatrix(n_atoms_max, permutation="sorted_l2").create(atoms)
sm = SineMatrix(n_atoms_max, permutation="sorted_l2").create(atoms)
mbtr = MBTR(atomic_numbers,
            k=[1, 2, 3],
            periodic=True,
            weighting={
                "k2": {
                    "function": "exponential",
                    "scale": 0.5,
                    "cutoff": 1e-3
                },
                "k3": {
                    "function": "exponential",
                    "scale": 0.5,
                    "cutoff": 1e-3
                },
            }).create(atoms)
示例#9
0
from dscribe.descriptors import SineMatrix

# Setting up the sine matrix descriptor
sm = SineMatrix(n_atoms_max=6,
                permutation="sorted_l2",
                sparse=False,
                flatten=True)

# Creation
from ase.build import bulk

# NaCl crystal created as an ASE.Atoms
nacl = bulk("NaCl", "rocksalt", a=5.64)

# Create output for the system
nacl_sine = sm.create(nacl)

# Create output for multiple system
al = bulk("Al", "fcc", a=4.046)
fe = bulk("Fe", "bcc", a=2.856)
samples = [nacl, al, fe]
sine_matrices = sm.create(samples)  # Serial
sine_matrices = sm.create(samples, n_jobs=2)  # Parallel

# Visualization
import numpy as np
from ase import Atoms
import matplotlib.pyplot as mpl
from mpl_toolkits.axes_grid1 import make_axes_locatable

# FCC aluminum crystal
示例#10
0
from ase.spacegroup import crystal
from dscribe.descriptors import SineMatrix

# Define atomic structures

skutterudite = crystal(('Co', 'Sb'),
                       basis=[(0.25, 0.25, 0.25), (0.0, 0.335, 0.158)],
                       spacegroup=204,
                       cellpar=[9.04, 9.04, 9.04, 90, 90, 90])
nacl = bulk("NaCl", "rocksalt", a=5.64)
al = bulk("Al", "fcc", a=4.046)
fe = bulk("Fe", "bcc", a=2.856)

samples_bulk = [skutterudite, nacl, al, fe]

# Setup descriptor
sm_desc = SineMatrix(n_atoms_max=35,
                     permutation="sorted_l2",
                     sparse=False,
                     flatten=True)

# Create single descriptor
sine_matrix = sm_desc.create(skutterudite)

print("Sine matrix for skutterudite:\n", sine_matrix)

# Create multiple descriptors
sine_matrices = sm_desc.create(samples_bulk)

print("List of Sine matrices:\n", sine_matrices)
示例#11
0
    def test_parallel_dense(self):
        """Tests creating dense output parallelly.
        """
        samples = [bulk("NaCl", "rocksalt", a=5.64), bulk('Cu', 'fcc', a=3.6)]
        desc = SineMatrix(n_atoms_max=5,
                          permutation="none",
                          flatten=True,
                          sparse=False)
        n_features = desc.get_number_of_features()

        # Multiple systems, serial job
        output = desc.create(
            system=samples,
            n_jobs=1,
        )
        assumed = np.empty((2, n_features))
        assumed[0, :] = desc.create(samples[0])
        assumed[1, :] = desc.create(samples[1])
        self.assertTrue(np.allclose(output, assumed))

        # Multiple systems, parallel job
        output = desc.create(
            system=samples,
            n_jobs=2,
        )
        assumed = np.empty((2, n_features))
        assumed[0, :] = desc.create(samples[0])
        assumed[1, :] = desc.create(samples[1])
        self.assertTrue(np.allclose(output, assumed))

        # Non-flattened output
        desc = SineMatrix(n_atoms_max=5,
                          permutation="none",
                          flatten=False,
                          sparse=False)
        output = desc.create(
            system=samples,
            n_jobs=2,
        )
        assumed = np.empty((2, 5, 5))
        assumed[0] = desc.create(samples[0])
        assumed[1] = desc.create(samples[1])
        self.assertTrue(np.allclose(np.array(output), assumed))
示例#12
0
 def test_number_of_features(self):
     """Tests that the reported number of features is correct.
     """
     desc = SineMatrix(n_atoms_max=5, permutation="none", flatten=False)
     n_features = desc.get_number_of_features()
     self.assertEqual(n_features, 25)
示例#13
0
 def create(system):
     desc = SineMatrix(n_atoms_max=3,
                       permutation="sorted_l2",
                       flatten=True)
     return desc.create(system)